

Lecture Notes in Artificial Intelligence 3374
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Danny Weyns H. Van Dyke Parunak
Fabien Michel (Eds.)

Environments for
Multi-Agent Systems

First International Workshop, E4MAS 2004
New York, NY, July 19, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Danny Weyns
Katholieke Universiteit Leuven
Department of Computer Science, AgentWise, DistriNet
3001 Leuven, Belgium
E-mail: danny.weyns@cs.kuleuven.ac.be

H. Van Dyke Parunak
Altarum Institute
3520 Green Court, Suite 300, Ann Arbor, MI 48105-1579, USA
E-mail: van.parunak@altarum.org

Fabien Michel
LIRMM - Université de Montpellier II
161 rue Ada, 34592 Cedex 5, Montpellier, France
E-mail: fmichel@lirmm.fr

Library of Congress Control Number: 2005920458

CR Subject Classification (1998): I.2.11, I.2, C.2.4

ISSN 0302-9743
ISBN 3-540-24575-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11389903 06/3142 5 4 3 2 1 0

Preface

The modern field of multiagent systems has developed from two main lines of
earlier research.

Its practitioners generally regard it as a form of artificial intelligence (AI).
Some of its earliest work was reported in a series of workshops in the US dating
from 1980, revealingly entitled, “Distributed Artificial Intelligence,” and pioneers
often quoted a statement attributed to Nils Nilsson that “all AI is distributed.”
The locus of classical AI was what happens in the head of a single agent, and
much MAS research reflects this heritage with its emphasis on detailed modeling
of the mental state and processes of individual agents. From this perspective,
intelligence is ultimately the purview of a single mind, though it can be amplified
by appropriate interactions with other minds. These interactions are typically
mediated by structured protocols of various sorts, modeled on human conversa-
tional behavior.

But the modern field of MAS was not born of a single parent. A few re-
searchers have persistently advocated ideas from the field of artificial life (ALife).
These scientists were impressed by the complex adaptive behaviors of communi-
ties of animals (often extremely simple animals, such as insects or even microor-
ganisms). The computational models on which they drew were often created by
biologists who used them not to solve practical engineering problems but to test
their hypotheses about the mechanisms used by natural systems. In the arti-
ficial life model, intelligence need not reside in a single agent, but emerges at
the level of the community from the nonlinear interactions among agents. Be-
cause the individual agents are often subcognitive, their interactions cannot be
modeled by protocols that presume linguistic competence. The French biologist
Grassé observed that these interactions are typically achieved indirectly, through
modifications of a shared environment [1].

All interaction among agents of any sort requires an environment. For an AI
agent whose interactions with other agents are based on speech act theory, the
environment consists of a computer network that can convey messages from one
agent’s outbox to another agent’s inbox. For an ALife agent, the environment is
whatever the agent’s sensors sense and whatever its effectors try to manipulate.

In most cases, AI agents (and their designers) can take the environment for
granted. Error-correcting protocols ensure that messages once sent will arrive in
due course. Message latency may lead to synchronization issues among agents,
but these issues can be discussed entirely at the level of the agents themselves,
without reasoning about the environment. As a result, the environment fades
into the background, and becomes invisible.

Not so for ALife agents. Simon observed long ago that the complex behavior
of an ant wandering along the ground is best explained not by what goes on inside
the ant, but by what happens outside, in the structure of the ground over which
the ant moves [2]. When a termite interacts with other termites by depositing

VI Preface

and sensing pheromones, the absorption and evaporation of the pheromone by
the environment plays a critical role in the emergent structure of the colony’s
behavior. There are no error-correcting protocols to ensure that an agent who
tries to push a rock from one place to another will in fact be able to realize that
objective. From the ALife perspective, the environment is an active participant
in agent dynamics, a first-class member of the overall system.

One happy result of the confluence of AI and ALife in MAS is the emer-
gence of hybrid agents that draw on the best of both earlier traditions. This
volume, and the workshop of which it is the archival record, is evidence of that
hybridization. The agents described in these papers are not artificial ants con-
structed to test a biologist’s theories about insect behavior, but components of
systems engineered to fly airplanes, or analyze sensor data, or produce plausi-
ble human-like behavior in a video game. Like AI agents, many of them have
cognitive, symbolic internal structures. Like ALife agents, all of them interact
explicitly and deliberately with the environment through which they coordinate
their behaviors.

The notion of the environment in MAS is still young, but the number of
papers contributed to this volume suggests the potential of this concept for en-
gineered systems, and their breadth sketches the broad framework of what a
mature discipline of environments for multiagent systems might resemble. The
entire life cycle of environmental engineering is represented here: conceptual
models and languages for the design and specification of environments, simula-
tion environments that admit environments as first-class objects, analysis of the
role played by an explicit environment in agent coordination, and examples of
full applications that exploit the power of an active environment. The introduc-
tory survey pulls these themes together to offer an integrated overview of this
emerging discipline.

This volume shows the wide range of exploration typical of a nascent dis-
cipline as pioneers discover the best ways to frame problems and approach so-
lutions. It will enable other researchers to take build on this body of initial
exploration, and should form the foundation for a fruitful new set of tools and
methods for developing multiagent systems.

[1] Grassé, P.P.: La Reconstruction du Nid et les Coordinations Inter-
individuelles chez Bellicositermes Natalensis et Cubitermes sp. La theórie
de la Stigmergie: Essai d’Interpreétation du Comportement des Termites
Constructeurs. Insectes Sociaux 6 (1959) 41-84

[2] Simon, H.A.: The Sciences of the Artificial. Cambridge, MA, MIT Press
(1969)

December 2004 H. Van Dyke Parunak
Ann Arbor, MI, USA

Organization

E4MAS 2004 was organized in conjunction with the 3rd International Joint
Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2004),
New York City, July 19, 2004.

Program Co-chairs

Danny Weyns Katholieke Universiteit Leuven, Belgium
H. Van Dyke Parunak Altarum Institute, Ann Arbor, USA
Fabien Michel Université de Montpellier II, Fran̈ce

Program Committee

Eric Bonabeau Icosystem, Boston, USA and Paris, France
Sven Brueckner Altarum Institute, Ann Arbor, USA
Paolo Ciancarini University of Bologna, Italy
Yves Demazeau Laboratoire Leibniz, IMAG, Grenoble, France
Marco Dorigo Université Libre de Bruxelles, Belgium
Alexis Drogoul Laboratoire d’Informatique de Paris 6, France
Jacques Ferber Université de Montpellier II, LIRMM, France
Tom Holvoet DistriNet, K.U.Leuven, Belgium
Franziska Klügl University of Wurzburg, Germany
Marco Mamei University of Modena and Reggio Emilia, Italy
Jean-Pierre Müller CIRAD–LIRMM, Montpellier, France
James Odell James Odell Associates, Ann Arbor, USA
H. Van Dyke Parunak Altarum Instutute, Ann Arbor, USA
Karl Tuyls COMO Lab, V.U.B., Belgium
Paul Valckenaers PMA, K.U.Leuven, Belgium
Franco Zambonelli University of Modena and Reggio Emilia, Italy

Website

http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/

Acknowledgements

Many thanks to the PC members for their critical review work. We also thank
Elke Steegmans, Alexander Helleboogh, Kurt Schelfthout, Tom De Wolf, Koen
Mertens, Nelis Boucké and Tom Holvoet for their efforts for E4MAS. A special
word of thanks to Tom De Wolf for managing the web site.

Table of Contents

Survey

Environments for Multiagent Systems State-of-the-Art and Research
Challenges

Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet,
Jacques Ferber . 1

Conceptual Models

AGRE: Integrating Environments with Organizations
Jacques Ferber, Fabien Michel, José Baez . 48

From Reality to Mind: A Cognitive Middle Layer of Environment
Concepts for Believable Agents

Paul Hsueh-Min Chang, Kuang-Tai Chen, Yu-Hung Chien,
Edward Kao, Von-Wun Soo . 57

A Spatially Dependent Communication Model for Ubiquitous Systems
Stefania Bandini, Sara Manzoni, Giuseppe Vizzari 74

Languages for Design and Specification

ELMS: An Environment Description Language for Multi-agent
Simulation

Fabio Y. Okuyama, Rafael H. Bordini,
Antônio Carlos da Rocha Costa . 91

MIC*: A Deployment Environment for Autonomous Agents
Abdelkader Gouäıch, Fabien Michel, Yves Guiraud 109

Simulation and Environments

About the Role of the Environment in Multi-agent Simulations
Franziska Klügl, Manuel Fehler, Rainer Herrler . 127

Modelling Environments for Distributed Simulation
Michael Lees, Brian Logan, Rob Minson, Ton Oguara,
Georgios Theodoropoulos . 150

X Table of Contents

Mediated Coordination

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems
Christine Julien, Gruia-Catalin Roman . 168

Environment-Based Coordination Through Coordination Artifacts
Alessandro Ricci, Mirko Viroli, Andrea Omicini 190

“Exhibitionists” and “Voyeurs” Do It Better: A Shared Environment
for Flexible Coordination with Tacit Messages

Luca Tummolini, Cristiano Castelfranchi, Alessandro Ricci,
Mirko Viroli, Andrea Omicini . 215

Applications

Swarming Distributed Pattern Detection and Classification
Sven A. Brueckner, H. Van Dyke Parunak . 232

Digital Pheromones for Coordination of Unmanned Vehicles
H. Van Dyke Parunak, Sven A. Brueckner, John Sauter 246

Motion Coordination in the Quake 3 Arena Environment: A Field-Based
Approach

Marco Mamei, Franco Zambonelli . 264

Author Index . 279

Environments for Multiagent Systems
State-of-the-Art and Research Challenges

Danny Weyns1, H. Van Dyke Parunak2, Fabien Michel3,
Tom Holvoet1, and Jacques Ferber3

1 AgentWise, DistriNet, K.U.Leuven, B-3001 Leuven, Belgium
{danny.weyns, tom.holvoet}@cs.kuleuven.ac.be

2 Altarum Institute, Ann Arbor, MI 48105-1579, USA
van.parunak@altarum.org

3 LIRMM, CNRS, Montpellier, 34392 Montpellier Cedex 5, France
{fmichel, ferber}@lirmm.fr

Abstract. It is generally accepted that the environment is an essential
compound of multiagent systems (MASs). Yet the environment is typ-
ically assigned limited responsibilities, or even neglected entirely, over-
looking a rich potential for the paradigm of MASs.

Opportunities that environments offer, have mostly been researched
in the domain of situated MASs. However, the complex principles behind
the concepts and responsibilities of the environment and the interplay
between agents and environment are not yet fully clarified.

In this paper, we first give an overview of the state-of-the-art on en-
vironments in MASs. The survey discusses relevant research tracks on
environments that have been explored so far. Each track is illustrated
with a number of representative contributions by the research commu-
nity. Based on this study and the results of our own research, we identify
a set of core concerns for environments that can be divided in two classes:
concerns related to the structure of the environment, and concerns re-
lated to the activity in the environment. To conclude, we list a number
of research challenges that, in our opinion, are important for further
research on environments for MAS.

1 Introduction

There is a general agreement in the multiagent research community that environ-
ments are essential for multiagent systems (MASs). Yet most researchers neglect
to integrate the environment as a primary abstraction in models and tools for
MASs, or minimize its responsibilities. As a consequence, a rich potential of
applications and techniques that can be developed using MASs is overlooked.

Popular frameworks such as Jade [9], Jack [44], Retsina [79] or Zeus [58]
reduce the environment to a message transport system or broker infrastructure.
Well-known methodologies such as Message [25], Prometheus [66] or Tropos [12]
offer support for some basic elements of the environment, however they fail to
consider the environment as a first-class entity. Standard literature on MASs

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 1–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 D. Weyns et al.

used for education, including [73, 93, 45], only deals very briefly with the topic
of environments. Even in the FIPA [34] specifications it is hard to find any
functionality for the environment beyond message transport or broker systems.
Restricting interaction to inter-agent communication neglects a rich potential of
possibilities for the paradigm of MASs.

Researchers working in the domain of situated MASs traditionally integrate
the environment as a first-class entity in a MAS. In situated MASs, the environ-
ment is an active entity with its own processes that can change its own state,
independent of the activity of the embedded agents. Inspired by biological sys-
tems, several researchers have shown that the environment can serve as a robust,
self-revising, shared memory for agents. This can unburden the individual agents
from continuously keeping track of their knowledge about the system. Moreover,
it enables the agents to use their environment as an excellent medium for in-
direct coordination. Gradient fields and evaporating marks in the environment
can guide agents in their local context and as such facilitate the coordination in
a community of agents in a decentralized fashion. Several practical applications
have shown how the environment can contribute to manage complex problems.
There are examples in domains such as supply chain systems, network support,
peer-to-peer systems, manufacturing control, multiagent simulation etc. Since
the exploitation of the environment in MASs results in better manageable so-
lutions, it is a promising paradigm to deal with the increasing complexity and
dynamism of future system infrastructure and more advanced problem domains,
e.g. ad hoc networks or ubiquitous computing.

Despite the large amount of work in the domain of situated MASs, we are
just at the very beginning of understanding the complex principles behind the
concepts related to the environment and the interplay between agents and the
environment. This paper aims to contribute in three ways. First we give an
overview of the state-of-the-art on environments for MASs. Based on this study
as well as the results of our own research, we identify a set of core concerns for
environments, as a second contribution. Third, we outline a number of research
challenges that, in our opinion, are important for the future development of
environments for MASs.

2 Organization of the Paper

In Sect. 3, we start with an overview of the state-of-the-art on environments
for MASs. Studying MAS literature with a focus on environments is a tough
job. During our study, we encountered two types of difficulties: (1) the term
environment has several different meanings, causing a lot of confusion, (2) the
functionalities associated with the environment are often treated implicitly, or
integrated in the MAS in an ad-hoc manner.

The confusion on what the environment comprises is mainly caused by mixing
up concepts and infrastructure. Sometimes, researchers refer to the environment
as the logical entity of a MAS in which the agents and other objects/resources
are embedded. Sometimes, the notion of environment is used to refer to the

Environments for Multiagent Systems 3

software infrastructure on which the MAS is executed. Sometimes, environment
even refers to the underlying hardware infrastructure on which the MAS runs.

The fact that functionalities of the environment are often treated implicitly,
or in an ad-hoc manner, indicates that in general, the MAS research community
fails to treat the environment as a first-class entity. [36] defines a first-class
module as: “a program building block, an independent piece of software which
[...] provides an abstraction or information hiding mechanism so that a module’s
implementation can be changed without requiring any change to other modules.”
Thus, the environment is in general not treated as an independent building block
that encapsulates its own clear-cut responsibilities in the MAS, irrespective of
the agents.

Starting from this perspective, the overview of the state-of-the-art on envi-
ronments for MASs we discuss in Sect. 3 is not just a summary of representative
papers on the topic of environments for MASs. In fact, the number of research
papers that are devoted to the environment is very limited. The overview is
rather a reflection on MAS research literature in which we have put the spot-
light on models and concepts associated with the environment. The survey is
structured as follows:

3.1 General models for environments (Russell and Norvig, Ferber, Odell et al.,
Environments for mobile agents)

3.2 Inter-agent facilities
– Communication infrastructure (Huhns & Stephens, FIPA, Jade, Retsina)
– Models for indirect interaction

• Classical blackboard communication
• Tuple-based interaction models (JavaSpaces, Lime)
• Stigmergy (Synthetic ecosystems, Network routing)
• Interaction models related to space in MASs (MMASS)

– Environment as an organizational layer (AGR)
3.3 Agent-Environment interaction

– Perception of the environment (Robocup Soccer Server, Model for active
perception)

– Dealing with actions in the environment (Synchronous model for action,
Action model with regional synchronization)

– Task-environments (Wooldridge, TAEMS)
3.4 Environments in agent-oriented methodologies (Gaia)

For each track we selected a number of relevant contributions from the re-
search community, specified in brackets. It is not a primary goal of the survey
to be complete, but rather to give an overview of the wide range of different
conceptions associated with the environment for MASs and its various uses.

In Sect. 4, we extract, from the listed research tracks, a set of core concerns
for environments in MASs. We have divided the concerns in two classes:

4.1 Concerns related to the structure of the environment (Structuring, Resources,
Ontology)

4.2 Concerns related to the activity in the environment (Communication, Ac-
tions, Perception, Environmental processes)

4 D. Weyns et al.

Each concern represents a logical functionality for which the environment
may have a natural responsibility. Our goal is to make the logical functionalities
explicit, i.e. as concerns of environments as first-class entities. We want to un-
derline that the proposed list of concerns is not intended to be complete. Our
aim is to give an initial impetus to explore the rich potential of environments
for MASs.

Next in Sect. 5 we outline a number of research challenges that, in our opinion,
are important for the further development of environments for MASs. We have
divided the list in three categories:

5.1 Definition and scope of environments
5.2 Agent-environment interrelationship
5.3 Engineering environments

Each category discusses a number of applicable research challenges. These
challenges may serve as a source of inspiration for future exploration of environ-
ments for MASs.

Finally, in Sect. 6 we draw conclusions.

Conventions. In the remainder of the paper, we use the following style conven-
tions:

• Quotations are put in “quotation marks.”
• Specific terms used in literature are marked in teletype.
• Terms of concepts we want to emphasize are marked in italic.

3 Environments for MASs: A Survey of the
State-of-the-Art

In this section we give an overview of a number of important research tracks
that, in one way or another, include some notion of environment. We start with
discussing a couple of general models for environments that have been proposed
in literature. Then we zoom in on various concepts and functionalities related
to inter-agent facilities in the environment and agent-environment interaction.
We conclude the section by discussing the position of environments in agent-
oriented software engineering. Each track is illustrated with a number of relevant
contributions from the research community.

3.1 General Models for Environments

We start our study on environments for MASs with a number of representative
models for environments that have been proposed in the research community.

Russell and Norvig. In chapter 2 of [73], S. Russell and P. Norvig discuss
how an intelligent agent relates to its environment: “An agent is anything that
can be viewed as perceiving its environment through sensors and acting upon
the environment through effectors.” This generally acknowledged relationship
between an agent and its environment is schematically depicted in Fig. 1.

Environments for Multiagent Systems 5

?

agent

percepts

sensors

actions

effectors

environment

Fig. 1. Agent interaction with the environment [73]

Russell and Norvig discuss a number of key properties of environments that
are now adopted by most researchers in the domain:

– Accessible versus inaccessible: indicates whether the agents have access to
the complete state of the environment or not.

– Deterministic versus nondeterministic: indicates whether a state change of
the environment is uniquely determined by its current state and the actions
selected by the agents or not.

– Static versus dynamic: indicates whether the environment can change while
an agent deliberates or not.

– Discrete versus continuous: indicates whether the number of percepts and
actions are limited or not.

The most complex class of environments are those that are inaccessible, non-
deterministic, dynamic and continuous. The first three properties of this list are
properties typically occurring in MASs.

Russell and Norvig also define a “generic environment program”, see Fig. 2.
The program periodically gives the agents percepts and receives back their ac-

procedure RUN-ENVIRONMENT(state, UPDATE-FN, agents, termination)
inputs: state, the initial state of the environment

UPDATE-FN, function to modify the environment
agents, a set of agents
termination, a predicate to test when we are done

repeat
for each agent in agents do

PERCEPT[agent] GET-PERCEPT(agent, state)
end
for each agent in agents do

ACTION[agent] PROGRAM[agent](PERCEPT[agent])
end
state UPDATE-FN(actions, agents, state)

until termination(state)

Fig. 2. A generic environment program [73]

6 D. Weyns et al.

tions. Next, the program updates the state of the environment based on the
actions of the agents and of possibly other dynamic processes in the environ-
ment that are not considered as agents. This simple program for environments
clearly illustrates the basic relationship between agents and their environment.

Ferber. In [28], J. Ferber discusses the modelling of environments for MAS at
length. According to Ferber, an environment can either be represented as a single
monolithic system, i.e. a centralized environment, or as a set of cells assembled
in a network, i.e. a distributed environment. In a centralized environment, all
agents have access to the same structure. In a distributed environment, each
cell behaves like a centralized environment in miniature. However, a cell of a
distributed environment differs in a number of ways from a centralized envi-
ronment: (1) the state of a cell in a distributed environment depends on the
surrounding cells, (2) the perception of agents in a distributed environment typ-
ically goes beyond one cell, (3) when agents move from cell to cell, the agent’s
link with the cells has to be managed and (4) the propagation of signals over
the network of cells has to be managed. Orthogonal to the difference between a
centralized or a distributed representation of environment, Ferber distinguishes
between “generalized” and “specialized” models for environments. A generalized
model is independent of the kind of actions that can be performed by agents.
A specialized model is characterized by a well-defined set of actions. Ferber fur-
ther distinguishes between purely communicative MASs (in which agents can
only communicate by message transfer), purely situated MASs (in which agents
can only act in the environment) and the combination of communicating and
situated MASs.

Central to Ferber’s model of an environment is the way actions are modelled.
The action model of Ferber distinguishes between influences and reactions
to influences. Influences come from inside the agents and are attempts to modify
the course of events in the world. Reactions, which result in state changes, are
produced by the environment by combining influences of all agents, given the
local state of the environment and the laws of the world. This clear distinction
between the products of the agents’ behavior and the reaction of the environment
provides a way to handle simultaneous activity in the MAS.

Ferber uses the BRIC formalism (Block-like Representation of Interactive
Components) to model a MAS as a set of interconnected components that can
exchange messages via the links. BRIC components encapsulate their own behav-
ior and can be composed hierarchically. Fig. 3 depicts a model for a combined
communicating and situated MAS in BRIC notation. In the BRIC model de-
picted in Fig. 3, the activity cycle of the MAS starts when the environment sends
“perceptions” to the agents. As soon as the Synchronizer sends “synchroniza-
tion of perceptions” signals to the agents, the agents are triggered to interpret
the perceptions. Then, each agent produces an influence in the environment and
possibly transmits a message to another agent. Next, the agent informs the Syn-
chronizer it has finished its action by sending an “synchronization of actions”
message. When all agents have sent their “synchronization of actions” messages,
the Synchronizer sends a “synchronization of reactions” message to the Environ-

Environments for Multiagent Systems 7

Fig. 3. BRIC model of communicating and situated MAS [28]

ment and simultaneously it sends a “synchronization of message transmission”
to the Message routing unit. As a consequence, the Environment calculates the
reactions to the collected influences, i.e. state changes of the Environment, and
the Message routing unit delivers the messages. When the reactions are calcu-
lated, the Environment sends an “end of reactions” message to the Synchronizer.
Analogously, the Message routing unit sends an “end of message transmission”
when all messages are delivered. After that, the Environment sends the next
perceptions to the agents and the whole cycle repeats. In the MAS model of
Fig. 3, messages are synchronized with actions, i.e the messages are transmitted
at the same time as the influences. A variant to this model is discussed in [87].

Odell et al. A classic paper on environment modelling for MAS is [61]. Ac-
cording to J. Odell and his colleagues, “an environment provides the conditions
under which an entity (agent or object) exists”. The authors distinguish between
the physical environment and the communication environment.

The physical environment provides the laws, rules, constraints and policies
that govern and support the physical existence of agents and objects. An example
of a law in the agent system is that two agents are not allowed to occupy the
same place at the same time. In accordance with [68], an environment is defined
as a tuple < State, Process >. State is a set of values that completely define the
environment, including the agents and objects within the environment. Process
indicates that the environment itself is an active entity. It has its own process
that can change its state, independently of the actions of the embedded agents.
The primary purpose of Process is to implement dynamism in the environment,
e.g. the aggregation, diffusion and evaporation of pheromones that ant-like agents

8 D. Weyns et al.

use to coordinate. Odell and his colleagues argue for a “common processing
platform [...] that would provide a foundation upon which agent applications
could build to leverage their own specific environmental requirements.” However,
they conclude, “In spite of the acronym, the FIPA (Agent Platform) architecture
focusses almost entirely on the electronic environment, and does not address the
physical environment. As such, it does not address the real potential of an active
environment [...] to get more powerful interaction.”

The communication environment provides (1) the principles and processes
that govern and support the exchange of ideas, knowledge and information,
and (2) the functions and structures that are commonly employed to exchange
communication, such as roles, groups, and the interaction protocols between
roles and groups. Basically, communication is the conveyance of information
from one entity to another. A difference exists between transmission and com-
munication. Communication requires that the information transmitted by one
agent results in a state change of another, i.e. an act of sensing and deciding
(although the latter may simply choose to do nothing). An interesting point
of view related to this issue is discussed in [82]. L. Tummolini and his col-
leagues propose the notion of Behavioral Implicit Communication (BIC) as
a parasitical form of communication that exploits both environmental prop-
erties and the agents’ capacity to interpret each other’s actions. To enable
BIC, the environment needs to support the observability of the actions of the
agents.

Odell and his colleagues define an agent’s social environment as “a com-
munication environment in which the agents interact in a coordinated manner”.
The social environment consists of (1) the social units (groups) in which the
agent participates, (2) the roles that are employed for social interaction and
(3) all the other members who play roles in these social groups. A group can
be empty if no agents participate in the group; its collection can also contain
a single participating agent or multiple agents. Groups have a unique identity
in the overall system. As such, groups can become social actors, e.g. a business
organization that interacts with sector groups in industry. The authors define a
role as an abstract representation of an agent’s function, service or identification
within a group. Roles determine the patterns of dependencies and interactions
among agents.

Environments for Mobile Agents. Since the mid nineties, mobile agents
have been an active area for research and development communities. Mobile
agents have the ability to migrate autonomously across a network, based on the
principle of code mobility. A mobile agent is capable to suspend its execution
at one node (at an arbitrary moment or at particular points in its life time),
to move along with its code and its execution state to another node, and to
resume its execution seamlessly. As such, a mobile agent is not bound to the
network host where it begins execution. This permits a mobile agent to move to
a destination node that contains the resources or services with which it wants to
interact. As such mobile agents provide flexibility inside a distributed network
to reduce network load and optimize service performance. Support for mobil-

Environments for Multiagent Systems 9

Fig. 4. Structure of a Distributed Agent Environment [65]

ity introduces additional requirements for the multiagent platform. During the
last decade, many platforms for mobile agents have been developed. Some
representative examples are Aglets from IBM [1], Voyager from Objectspace
[83], Grasshopper from IKV++ [39], Ajanta from University of Minnesota [2] or
SOMA developed at the University of Bologna [76].

Mobile agent platforms realize a distributed processing environment that is
usually referred to as Distributed Agent Environment (DAE). DAEs typically
support a hierarchy of locality abstractions to model physical network resources.
Fig. 4 depicts an abstract overview of a DAE. The white agents symbolize mobile
agents, the gray symbolize stationary agents.

On each host, at least one agent system has to run to support the execu-
tion of agents. Each agent system provides one or more places. A place is an
executing context that offers specific services. An example is a trading place
where agents can offer or buy information and service access. A region groups
a number of agent systems (typically in a local area network). Each region has
a region registry that maintains information about all registered agent sys-
tems, places and the hosted agents. The current location of mobile agents is
updated in the corresponding region registry after each migration. The termi-
nology used in Fig. 4 (region, place and agent system) is standardized by the
OMG MASIF standard [63]. [65] enumerates a number of common capabilities
for mobile agent platforms:

1. Agent execution: basic provisions to put incoming agents into execution,
taking into account the binding to local resources.

2. Transport: mobility support to facilitate the network transport of agent code
and execution state.

10 D. Weyns et al.

3. Unique identification: support for the generation of unique agent identifiers,
even in the scope of the entire Internet.

4. Communication: support to enable agents to communicate with one another
and with platform services.

5. Security: support for security issues such as authentication, access control
of resources and integrity guarantees for code/state during the transfer over
an untrusted network.

6. Management: enable system administrators to interact with the system,
e.g. to monitor agents or to interrupt the execution of an agent task.

An important issue for mobile agent systems is interoperability. Interoperabil-
ity permits the integration of heterogeneous agent systems and legacy systems.
To obtain interoperability, most platforms for mobile agents therefore comply
to one of the two main standards, the OMG MASIF standard [63] or the FIPA
standard [34].

3.2 Inter-agent Facilities

In this section, we zoom in on various concepts and functionalities related to
inter-agent facilities in the environment. We have organized the material in
line with the taxonomy of agent interaction mechanisms proposed in [69]. We
start with studying traditional infrastructure for direct message transfer between
agents. The most commonly used form of direct message flow are peer-to-peer
conversations, but also a distinguished agent that commands a subordinate is
an example. Next, we discuss several models for indirect interaction, including
blackboard systems, tuple-based interaction models and stigmergy. To conclude
we look at models in which the environment serves as an organizational layer.

Communication Infrastructure. Communication is without any doubt a ba-
sic aspect of any MAS. In this section, we focus on communication infrastructure
for message transfer between agents. We start with some general reflections on
agent communication from Huhns and Stephens. Then we look at the FIPA
agent platform for communication. In connection we discuss two concrete archi-
tectures for communication: the FIPA compliant middleware platform Jade, and
the Retsina MAS infrastructure.

Huhns and Stephens. In the 2nd chapter of [45], M. Huhns and L. Stephens
discuss characteristics and concerns of multiagent environments. The authors
list the following characteristics:
1. Multiagent environments provide an infrastructure specifying communica-

tion and interaction protocols
2. Multiagent environments are typically open and have no single centralized

designer
3. Multiagent environments contain agents that are autonomous and distributed

and may be self-interested or cooperative
Next the authors list a brief summary of a number of concerns of multiagent

“execution environments”:

Environments for Multiagent Systems 11

Fig. 5. FIPA agent platform reference model [34]

1. Design autonomy: relates to the platform, interaction protocols and agent
architecture

2. Communication infrastructure: relates to type of communication medium
and the type of connection

3. Directory service: white or yellow pages
4. Message protocol: refers to language (e.g. KQLM) and technology (e.g. COR-

BA)
5. Mediating and Security services: e.g., support needed for transactions or

authentication
6. Operations support: refers e.g. to archiving

Hunhns and Stephens look at the environment as a computational infrastruc-
ture that enables agents to communicate with one another.

FIPA. The FIPA (Foundation for Intelligent Physical Agents) agent platform
reference model [34] illustrates a typical communication infrastructure for direct
message exchange, see Fig. 5.

The key building block of an environment in FIPA is the agent platform.
An agent platform includes a “run-time environment” that defines the life cycle
of the agent system, and executes e.g. on a Java virtual machine. The building
blocks of the agent platform are: (1) a directory facilitator acting as a yel-
low pages service for the agents to advertise and discover services offerings, (2) an
agent management system that enables agents to register on the platform and
to locate one another (i.e. a white pages service) and that controls resource usage,
and (3) a message transport system, i.e. a communication service for local
and inter-platform message exchange. The message transport system is specified
in great detail. It specifies transport protocols (low level details for wired and

12 D. Weyns et al.

wireless transfer of messages between interfaces on different agent platforms)
and message transport envelopes (encoding of metadata required for message
forwarding over individual transport protocols). Lastly, the message transport
system also includes specifications of several ACL message representations that
define the syntax to be used when sending messages. Besides a standard for
message transport, FIPA also provides standards for interagent communication,
i.e. it defines the precise semantics of the exchanged bits. These specifications
are divided in four sections: (1) the message structure specification that defines
the structure of FIPA-ACL (FIPA Agent Communication Language) messages,
(2) a library of performatives, defining the semantics of different communica-
tive acts, (3) a number of protocols, i.e. message sequences applicable in agent
systems and (4) a content language for FIPA messages, called FIPA-CL (FIPA
Content Language). Note that FIPA does not define an ontology language to ex-
press domain knowledge. An increasing number of agent platforms comply with
the FIPA standard, including Jack [44], Jade [9] and Zeus [58].

JADE. Fig. 6 depicts the Jade (Java Agent Development Environment)
architecture [9]. Jade is a pure Java, middleware platform intended for the
development of distributed multiagent applications based on peer-to-peer com-
munication. Jade includes Java classes to support the development of applica-
tion agents and the “run-time environment” that provides the basic services
for agents to execute. An instance of the Jade run-time is called a container,
and the set of all containers is called the platform. The platform provides a
layer that hides from agents the complexity of the underlying execution sys-
tem. Jade includes a naming service ensuring that each agent has a unique
name, and a yellow pages service that can be distributed across multiple hosts.

Fig. 6. The Jade architecture [9]

Environments for Multiagent Systems 13

Agents can dynamically discover each other and communicate by exchanging
asynchronous messages. The structure of the messages complies with the FIPA-
ACL language definition. Jade provides a set of skeletons of typical interac-
tion protocols. The platform also supports mobility of code and execution state
(exclusive the data on the JVM -Java Virtual Machine- stack). This enables
agents to stop running on a host, migrate to a different remote host and restart
execution from the point they stopped. Jade is widely used in the academic
community and several companies are using Jade for their internal projects,
including Telecom Italy [81], Whitestein Technologies AG [90] and Rockwell
Automation [72].

RETSINA. Retsina (Reusable Environment for Task-Structured Intelligent Net-
work Agents) [79] is a well-known MAS infrastructure, see Fig. 7. Retsina is an
open MAS infrastructure that supports communities of heterogeneous agents.
The Retsina MAS infrastructure is build up in several layers. The operating
environment provides the platform on which the infrastructure components and
the agents run. Retsina supports a broad range of execution platforms and it
automatically handles different types of network transport layers.

The communication infrastructure provides two types of communication chan-
nels: one for message transfer between peers, the other for multicast that is

Fig. 7. The Retsina MAS infrastructure [79]

14 D. Weyns et al.

used for a discovery process to let the agents find infrastructural components.
The ACL used in Retsina is KQML (Knowledge Query and Manipulation Lan-
guage) [33]. Retsina provides an ontology derived from the Wordnet Ontology
[27] and a protocol engine with a protocol language. The MAS management
services offer tool support to monitor the activity of the agents and to debug
and launch the applications. Retsina provides a service for performance moni-
toring in simulation. The security module supports agent authentication, secure
communication and integrity of the Retsina infrastructure components. A first
basic high-level infrastructural support is offered through ANSs (Agent Name
Services). An ANS provides a means to abstract away from physical locations
by mapping agent identifiers to network addresses. ANSs do not participate in
the transactions between agents, they only provide the agents with addresses
that they can cache, removing the need for unnecessary lookups. A second level
of infrastructural support is offered by middle agents, i.e. matchmakers. Match-
makers provide a mapping between agents and services. Service providers can
advertise their services at the matchmakers and agents can request the match-
makers to get contact information of relevant providers. Advertisement and re-
quests have to be formulated in a special language called LARKS (Language
for Advertisement and Request for Knowledge Sharing) [78]. The Retsina-OAA
InterOperator on top of the Retsina MAS architecture bridges the Retsina MAS
infrastructure with the OAA platform (Open Agent Architecture) [18]. Due to
fundamental differences in the architectures, not all inter-agent interactions can
be translated.

Models for Indirect Interaction. In this section we discuss interaction mod-
els in which entities interact indirectly through some kind of communication
abstraction. Indirect (or mediated) interaction is characterized by a number of
fundamental properties, such as name uncoupling, space uncoupling and time
uncoupling. In order to communicate, interacting entities do not have to know
each other explicitly, nor do they have to be at the same place, they do not
even have to co-exist at he same time. Especially in open, highly dynamic, dis-
tributed systems, these properties enable flexible and robust interaction among
the cooperating entities. An interesting attempt to define a unified framework
for indirect interaction is the work on coordination artifacts of A. Omicini,
A. Ricci and M. Viroli [64].

Classical Blackboard Communication Infrastructure. Blackboard systems were
the first type of mediated interaction models proposed by AI researchers [24][20].
A blackboard is an intermediary data repository that enables cooperating soft-
ware modules to communicate indirectly and anonymously. A classic blackboard
system consists of three main components [20], see Fig. 8:

1. The knowledge sources are independent computational modules that to-
gether contain the expertise to solve the problem.

2. The blackboard is a system-wide data repository containing the shared data;
interaction between knowledge sources only happens via the blackboard.

Environments for Multiagent Systems 15

Fig. 8. Components of a classical blackboard system

3. A control component makes runtime decisions about the course of prob-
lem solving. When the currently executing knowledge source completes, the
control component selects the most appropriate pending knowledge source
for execution. To guide its selection, knowledge sources provide the control
component with the necessary control knowledge.

Traditional MASs contrast with blackboard systems since they emphasize au-
tonomy of agents, coordinated interaction between the agents, distribution (thus
no central data repository) and organization as an emergent global phenomenon.
As such, MASs and blackboard systems are two technologies with different appli-
cation domains. Traditional blackboard systems are most appropriate for closely
collaborating problem solving, while the focus of MASs is on solving large-scale
distributed problems.

Tuple-based Interaction Models. In contrast to blackboard systems, tuple-based
technologies use associative access to a shared dataspace for communication
and synchronization purposes. Tuplespaces were first introduced in Linda [16].
Linda is a coordination language, where coordination is defined in the spirit of
separation of concerns: computation, i.e. the internal behavior of the active enti-
ties in the system, and coordination, i.e. the management of the interdependent
active entities, especially their communication and synchronization, should be
separated as much as possible. Linda attains this by providing a coordination
language that enables communication between agents. Agents in Linda commu-
nicate by putting tuples in, and removing them from a shared space, i.e. the
tuplespace. The Linda language is in essence composed out of three primitives:
in, allows to take a tuple out of the tuplespace that matches with a given tem-
plate; out, allows to put a tuple in the tuplespace; and rd that allows to non-
destructively read a tuple based on a template. Throughout the years variants
for distributed computing appeared, such as MARS [15], Sun’s JavaSpaces [77]
and LIME [57]. We take a closer look at the latter two.

16 D. Weyns et al.

JavaSpaces. [77] is a tuplespace model developed as part of (and as base of)
Sun’s Jini [35]. JavaSpaces is a fairly straightforward translation of the original
Linda model to a distributed setting. JavaSpaces offers the possibility of several
remotely accessible tuplespaces. Since it was developed in the context of the
Java programming language, not tuples but objects are put in the tuplespace.
JavaSpaces adds the possibility of distributed transactions on the tuplespace.
The fact that this is a hard problem was raised by N. Busi [14]. Busi showed
that the serializability of transactions is not always guaranteed by the JavaSpaces
system. JavaSpaces remains important as it is supported by Sun and used as
discovery mechanism for the Jini system.

LIME. (Linda In a Mobile Environment) [57] is a middleware system that al-
lows communication between agents in a similar way as Linda does. However,
it is built to operate in a mobile environment, as opposed to Linda which is
conceived for parallel computing. Instead of communicating through one central-
ized tuplespace, in Lime each agent carries its own tuplespace. The traditional
tuplespace operations are available, augmented with other operations such as
the non-blocking read and non-blocking in operations. The originality of the
approach is that, when agents reside on the same or a connected host, their
tuplespaces are merged transparently, i.e. agents have the illusion of a locally
shared tuplespace. The Lime middleware can be used for applications where both
the agents are mobile (i.e. moving from host to host) and the hosts are mobile
(i.e. physically moving). In order to make this possible a location parameter is
added to the operations, so that agents can select the tuplespace they wish to
interact with. Also, to cope with the dynamic environment, reactions can be
defined, i.e. code that is executed by the tuplespace when specific tuples are
inserted in the tuplespace.

In recent years, a number of tuple-based systems were proposed for ad hoc
and mobile computing. ObjectPlaces [74], EgoSpaces [47] and TOTA [49] add
mechanisms for sharing tuples across tuplespaces. ObjectPlaces maintains an
agent defined view on a host’s surroundings. A view is an up-to-date represen-
tation of the state of tuplespaces on neighboring nodes in the network, and this
representation is maintained as the network and the contents of the tuplespaces
change. This can be done efficiently since the interface to the tuplespaces in
ObjectPlaces is asynchronous (i.e. operations do not block, but their result is
returned when it is available), as opposed to the synchronous interface com-
mon in other tuplespace-like systems. In the EgoSpaces system, a view is sim-
ilarly a description of neighboring hosts in the network, and the system allows
agents to execute Linda-like operations on the tuplespaces gathered from the
view specification. EgoSpaces is built upon the Lime system. TOTA takes a
different approach. The TOTA middleware maintains distributed tuples: a dis-
tributed tuple can for example represent a gradient field that decays as it is
propagated on the network. This tuple is thus spread out over different dis-
tributed tuplespaces, and the TOTA middleware maintains the tuple as the
network topology changes.

Environments for Multiagent Systems 17

Stigmergy. The term stigmergy is coined by Grassé [38] to explain nest construc-
tion in termite colonies. The concept indicates that individual entities interact
indirectly through a shared environment: one individual modifies the environ-
ment and others respond to the modification, and modify it in turn. [68] discusses
several uses of stigmergy for MAS.

A popular means for such indirect interaction is through pheromones. A
pheromone is a chemical substance (or a software counterpart) deposited in
the environment. A pheromone has three interesting properties: (1) it aggre-
gates, i.e. newly dropped pheromone merges with/reinforces already existing
pheromone, (2) it diffuses, meaning it propagates in its local environment, and
(3) it evaporates, meaning it decays over time. A pheromone is thus a represen-
tation of shared agent knowledge: it spreads to other nearby agents, allowing
a local information transfer; it can be reinforced by other agents, allowing the
MAS to incrementally build a solution; and disappears over time, which is a
natural way to cope with dynamism in the environment.

Some applications using stigmergy include solving constraint problems, used
by Dorigo’s Ant Colony Optimization [23]; routing calls through telecommuni-
cation networks [11]; manufacturing control [13] and peer to peer systems [56].
For more application examples and more in-depth technical discussion, we re-
fer to [10]. Here we take a closer look at two representative uses of stigmergy.
First we zoom in on synthetic ecosystems presented in [13], than we look at the
telecommunication network routing infrastructure presented in [11].

Synthetic Ecosystem. In [13], S. Brueckner considers a synthetic ecosystem
where on the one hand agents control physical entities in the real world, but
on the other hand, agents act among each other in a software environment. To
enable indirect coordination among software agents in the same way social ants
coordinate, the software environment emulates the “services” provided by the
real world of ants. The part of the software environment realizing the services is
called the pheromone infrastructure.

The pheromone infrastructure models a discrete spatial dimension. It com-
prises a finite set of places and a topological structure linking the places. A link
connecting two places has a downstream and an upstream direction. Thus, for
each place there is a set of downstream and a set of upstream neighbor places
that are directly linked to it. Each agent in a synthetic ecosystem is mapped to
a place, i.e. the current location of the agent, which may change over time. The
pheromone infrastructure models a finite set of pheromone types. A pheromone
type is a specification of a software object comprising a strength-slot (real num-
ber) and other data-slots. For each pheromone type, a propagation direction
(downstream or upstream) is specified.

The pheromone infrastructure handles a finite set of software pheromones
for each pheromone type. Every data-slot, except the strength-slot, is assigned
a value of a finite domain to form one pheromone (type, direction etc.) The
strength value (i.e. the value in the strength-slot) is interpreted as a specific
amount of the pheromone. Different pheromones of a synthetic ecosystem may
be stored in each place.

18 D. Weyns et al.

An agent may perform the following activities at its current place in the
pheromone infrastructure:

– Access the references to all agents located at a place.
– Perceive the neighbor places of a place.
– Sample the local strength values of a specified set of pheromones.
– Initiate a change in the local strength of a specified pheromone by a specified

value.

The pheromone infrastructure manipulates the values in the strength-slot of
the pheromones at each place in the following way:

1. External input (aggregation): based on a request by an agent, the strength
of the specified pheromone is changed by the specified value.

2. Internal propagation (propagation/diffusion): Assume an external input of
strength s into a pheromone g at a place p. The input event is immediately
propagated to the neighbors of p in the propagation direction of g. There,
the local strength of g is changed by an input weaker than s. An even weaker
input propagates to the following neighbors. The stepwise weakening of the
input is influenced by g ’s propagation parameter.

3. Without taking changes caused by external input or propagation into ac-
count, the strength of each pheromone is constantly reduced in its absolute
value (evaporation). The reduction is influenced by the evaporation param-
eter of the pheromone.

There is a major difference between the algorithms realized in the pheromone
infrastructure and those observed in nature. After an ant deposits pheromones on
the ground, evaporation disperses it. Particle by particle the pheromone moves
through the continuous space driven by Brownian motion. At the initial loca-
tion the amount of pheromones is reduced, while it builds up somewhere else
or vanishes completely. In the discrete space of the pheromone infrastructure,
propagated pheromones have only specific locations on which to “settle down”.
Furthermore, the structure of the space is not homogeneous. At some places,
pheromones may be propagated to many places, while at other places no fur-
ther propagation is possible. As a consequence, the mechanisms of evaporation
and propagation of pheromones are modelled separately. Instead of continuously
exchanging particles among places, there is one “wave” of input events running
along the links, which is triggered by the original input of the agent.

The pheromone infrastructure realizes an application-independent support
for synthetic ecosystems designed according to a number of design principles,
such as decentralization, locality, parallelism, indirect communication, informa-
tion sharing, feedback, randomization and forgetting. In [13], the principles of
synthetic ecosystems and the proposed pheromone infrastructure are applied
to manufacturing control systems. V. Parunak and his colleagues have applied
digital pheromones in several practical applications, for an overview we refer
to [67].

Network Routing. In [11], E. Bonabeau and his colleagues present an ant-
like mechanism for routing and load balancing in telecommunication networks

Environments for Multiagent Systems 19

that builds upon work of R. Schoonderwoerd [75] and S. Guérin [40]. Routing
allows calls to be transmitted from a source to a destination through a sequence
of intermediate switching nodes. The pathway of a message must be as short
as possible, taking into account fluctuations of user traffic and changes of the
network structure (e.g. link or switch failures.) To provide fault tolerance and
spreading the computational load, the routing functionality should be imple-
mented in a decentralized way. Social insects exhibit flexibility and robustness,
solving difficult problems in a highly distributed way. The authors exploit this
knowledge to tackle the routing problem in telecommunication networks. In the
original routing algorithm of Schoonderwoerd [75], a node Ni (of a network with
n nodes), with k(i) neighbors (links being bidirectional) is characterized by a
routing table Ri = [ri

l,m]n−1,k(i) that has n − 1 rows and k columns: each row
corresponds to a destination node and each column to the next node. ri

l,m gives
the probability that a given message, the destination of which is node Nl, be
routed from node Ni to node Nm.

Agents go from their source node to their destination node by moving from
node to node. The next node an agent will move to is selected according to the
routing table of its current node. Agents update routing tables of nodes viewing
their node of origin as a destination node, i.e. agents use certain knowledge
about the portion of the network they come from to modify routing tables. For
its part, this modification will influence the routing of messages and agents that
have this portion of the network as destination. This approach avoids requiring
agents to go back all the way to their node of origin to update the intermediate
routing tables.

More precisely, an agent modifies the row corresponding to its source node,
which is viewed as its destination node. With Ns the source node of an agent, Nm

the node it just came from, and Ni its current node at time t, the entry ri
s,m(t)

is reinforced while other entries ri
s,l(t) in the same row decay. The modification

is determined by a reinforcement parameter δr that depends on the agent’s
characteristics. The influence of δr of a given agent must depend on how well
this agent is performing, e.g. aging can be used to modulate δr. If an agent has
been waiting a long time along its route to its destination node, it means that
the nodes it has visited and links it has used are congested, so that δr should
decrease with the agent’s age.

Based on an idea of Guérin [40], Bonabeau and his colleagues propose to
update not only the row that corresponds to an agent’s source node, but all rows
corresponding to all the intermediate nodes visited by the agent. Thereby the
reinforcement of an entry associated with a given name is discounted by a factor
that depends on the agent’s age relative to the time it visited that node. [11]
shows that the extended approach yields significantly better performance results.
The authors however, point to the simplifications of previously used models and
state that realistic tests in complex network models are needed. Therefore a
deeper understanding of the limits and constraints of communication networks
is necessary.

20 D. Weyns et al.

Interaction Models Related to Space in MASs. The ancestors of agent models
providing an explicit representation of the spatial structure of the environment
are Cellular Automata (CA) [91][92]. The CA model provides a regular lattice
of automata, characterized by a homogeneous state and transition rule. The
related structure is naturally suited to represent an abstraction of a physical
environment, and CA have been widely used to model problems in which spatial
features can play an important role. Some approaches providing the integration
of CA and agent systems have been proposed, see e.g. [22]. Several platforms for
MAS-based simulation, developed in line with Swarm [55], implement a spatial
structure of the environment in terms of regular grids.

The Multilayered Multi Agent Situated System (MMASS) [6] is a MAS model
providing an explicit representation of the agents environment and an interaction
model strongly related to the agents context. The environment is modelled as
a multi-layered structure, where each layer is represented as a connected graph
of sites. Layers may represent abstractions of a physical environment, but can
also represent logical aspects, e.g. the organizational structure of a company.
Between the layers specific connections (interfaces) can be defined that are used
to specify that information generated in one of these layers, may propagate into
a different one. In MMASS, agents can (1) interact through a reaction among
adjacent entities, (2) emit fields that are diffused in the environment, and (3)
can be perceived by other agents. After experiments for the simulation of com-
plex systems, the MMASS model has been recently proposed for applications in
the ubiquitous computing scenario [50]. This type of application requires soft-
ware architectures and tools based on models comprising some notion of space.
Among other approaches sharing this viewpoint, it is important to mention Co-
Fields [48] (Computational Fields) of M. Mamei, L. Leonardo and F.Zambonelli.
Co-Fields supports the coordination of agents in an environment by means of
distributed data structures (i.e. the co-fields) that can be spread either by the
agents themselves or by other elements of the environment. Agents can sense the
intensity of co-fields and are constantly guided by them, e.g. by moving towards
local minima.

Environment as an Organizational Layer. Recently a particular interest
has been given to organizational concepts within MAS such as “organizations”,
“groups”, “communities”, “roles” etc. [21, 29, 46, 37, 95, 59]. From an organiza-
tional perspective, a MAS can naturally be considered and designed as a com-
putational organization [94] that defines a framework for agent activities, i.e. the
organization imposes a set of constrains for the behavior of agents, and offers
a set of facilities and services that agents may use. In [30] J. Ferber and his
colleagues make a distinction between ACMAS or agent-centered MAS and OCMAS
or organizational-centered MAS. In OCMAS, the organization acts (1) as a “dy-
namic framework” where agents may enter and leave organizations at will, and
(2) as an environment for resources, services, communications and tasks, through
the concepts of both groups and roles.

Thinking in terms of organizational design differs from the agent-centered
approach that has been dominant during many years. When building an OC-

Environments for Multiagent Systems 21

MAS, the designer first concentrates on the organizational level by specifying the
structures and pattern of activities among agents, based on abstractions such
as groups, roles, interaction protocols, authority constraints between roles, etc.
At this stage, no mental issues such as beliefs or goals are considered. It is only
when the organization has been specified that the MAS developer focusses on
the agent’s internal architecture.

Several models of OCMAS have been proposed [4, 30, 60]. Here, we briefly
examine the AGR model (previously called Aalaadin) [29, 30] which is a very
simple organizational model.

AGR. The AGR model is based on three primitive concepts: Agent, Group and
Role. In the AGR model, agents play roles within groups. An agent may play
multiple roles at the same time and may be a member of several groups. A group,
as a part of an organization, is used as a context for patterns of activity. Agents
are only allowed to communicate with agents of the same group. Suppose that
an agent a of group G wants to communicate with an agent b of group H, but a
does not belong to H and b does not belong to G. Communication can only be
established when agent a joins group H, or agent b joins group G, or an agent c
exists that is member of both groups G and H, and that can act as a mediator
for this communication. This restriction on the scope of communication supports
the creation of well-defined organizational structures such as hierarchies.

Groups act as environments for agents. An agent may enter or leave a group
as a human may enter or leave a house or a social structure such as a firm
or a lab. Within a group, agents provide services and facilities that the other
agents of the group may use. Partitioning a society of agents into several groups
enables a designer to build secure systems where secured groups of agents protect
themselves by requesting authorization to be joined.

AGR provides a set of diagrams to describe organizations [30]. In the “cheese-
board diagram”, a group is represented as an oval that imitates a board. Agents
are represented by skittles that are positioned on a board and cut across a board
when they belong to several groups.

A role is represented as a hexagon and a line links the role to agents. Fig. 9
illustrates a concrete organization using the cheeseboard diagram. In this exam-

Fig. 9. The “cheeseboard” diagram in AGR for describing concrete organizations

22 D. Weyns et al.

Fig. 10. The organizational sequence diagram in AGR

ple, the agent F is a member of both groups, G2 and G3, and the agent plays
roles R4 and R5 in group G2, and role R6 in group G3.

The “organizational sequence diagram” describes the dynamics of organiza-
tions, i.e. the temporal relationships between organizational events, such as the
creation of a group, an agent that enters a group or leaves it, or the acquisition
of a role. The organizational sequence diagram can be seen as an extension of
UML sequence diagram that incorporates the dynamics of roles and groups.

Contrary to an AUML sequence diagram where the life-line of an agent is
represented by a single vertical line, in an organizational sequence diagram the
life-line of an agent may consists of several (possibly parallel) segments. Each
segment describes the life of an agent playing a specific role in a specific group.
Parallel segments represent the fact that an agent plays several roles simultane-
ously. Fig. 10 depicts an example of a organizational sequence diagram.

MadKit [41, 52] is a multiagent platform, that has been designed according
to the AGR model. In MadKit, groups and roles are used as core mechanisms for
building, launching, deploying, simulating and observing multiagent programs.
Several practical applications have proven the usefulness of MadKit and the
underlying AGR model.

Extensions of AGR. In AGR, organizations do not encompass the notions of
situatedness and action. To integrate the notion of situatedness in AGR, a spatial
relationship could be added to a group. However, this extension would raise many
difficult problems: e.g. what is the semantics of “distance” in relation to roles, is
a role representing a “social location” as coordinates represent spatial locations?
This approach has not been followed so far. To include the notion of action in

Environments for Multiagent Systems 23

AGR, it is necessary to reify the concept of environment and to integrate it with
the organizational concepts.

In [70], V. Parunak and J. Odell propose an extension of AGR by reifying
the environment. In this model, an agent is both a member of (possibly several)
groups, and an element of an environment. This work is interesting, but needs
further exploration. In [32], J. Ferber and F. Michel propose another approach
and consider an organization as a special kind of environmental zone, called an
area. Actions are associated with organizations, i.e. communicating, entering a
group or leaving it, playing a role, and creating a group.

In summary, the main idea of the research track on AGR is to offer an
organizational-centered approach to build MASs. In AGR, the designer first
considers the organization of the MAS as an accessible organizational structure
in which agents have to behave, i.e. the designer builds the agent system accord-
ing to the roles the agents play in the organization. Afterwards, the designer can
focuss on the agent internal architectural details.

3.3 Agent-Environment Interactions

In this section, we discuss different models related to agent-environment inter-
action. First we look at agents’ perception of the environment. Then we zoom in
on a couple of models for actions. The section concludes with a brief discussion
of the notion of task-environments.

Perception of the Environment. Perception is the ability of an agent to
observe its neighborhood, resulting in a percept of the environment. Percepts
describe the sensed environment in the form of expressions that can be under-
stood by the agent. Agents use percepts to update their knowledge about the
world or use it directly for decision making. In the case of an agent situated in
the physical world, perception can be implemented in hardware: for example,
it might be a video camera or a laser sensor on a mobile agent. For software
agents situated in a virtual environment, perception must be implemented in
software. Although perception is very common for any MAS, relatively little re-
search work has been done in this area. Most of the research on perception can
be found in robotics and cognitive science. For virtual environments, where all
aspects of perception must be modelled explicitly, only a couple of theories and
generic models for perception have been proposed. First, we illustrate perception
in the RoboCup Soccer Server, then we discuss a domain independent model for
active perception.

RoboCup Soccer Server. The RoboCup Soccer Server [71] supports three kinds
of sensors in its sensor model: the aural sensor, the visual sensor and the body
sensor. The aural sensor detects messages sent by the referee, the coaches and
the other players. All messages are received immediately. The format of an aural
sensor message is:

(hear T ime Sender Message)

24 D. Weyns et al.

Time indicates the current time, Sender refers to the sender and Message to
the content of the received message. Several server parameters affect the aural
sensor. E.g., a player can only hear a message if the player’s hear capacity is
at least hear decay, since the hear capacity of the player is decreased by that
number when a message is heard. Every cycle, the hear capacity is increased with
hear inc, but is limited to hear max. Players can receive more than one message
at the same time. A message of a player is transmitted only to the players within
audio cut dist meters from that player.

The visual sensor reports objects currently seen by the player. The informa-
tion is automatically sent to the player every sense step, a fixed period of time.
Visual information arrives from the server in the following format:

(see ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

ObjName refers to the name of the observed object, Distance and Direction
are self-explaining. DistChng and DirChng refers to information about the rel-
ative velocity of the target object. BodyDir and HeadDir are only included if
the observed object is another player and indicate the head and body direc-
tion of the other player relative to the observing player. The visible sector of a
player is dependent on several parameters such as sense step, which determines
the basic time step between received visible information, visible angle, i.e. the
player’s view cone, and visible distance being the number of meters a player is
able to see an object. If an object is within the distance but not in the view
cone, then the player can only perceive the type of the object (ball, player,
goal etc.) but not the exact name of the object. The player itself can influ-
ence the frequency and quality of the information by changing ViewWidth and
ViewQuality.

Finally, the body sensor reports the current “physical” status of the player.
This information is automatically sent to the player every sense body step. The
transmitted information contains different kinds of player-specific information,
such as: AmountOfSpeed, i.e. an approximation of the player’s current speed,
HeadDirection, i.e. the relative direction of the player’s head, and MoveCount,
i.e. a counter that indicates the number of move commands the player has exe-
cuted so far.

The Robocup Soccer Server supports a rich and flexible model for perception,
however the model is confined to the Robocup domain.

Model for Active Perception. In [89], D. Weyns, E. Steegmans and T. Holvoet
propose a generic model for active perception that focusses on software agents
situated in a virtual environment. Active perception enables an agent to direct
its perception at the most relevant aspects of the environment according to its
current task, facilitating better situation awareness and helping to keep pro-
cessing of perceived data under control. The authors state that their model is
generic in the sense that (1) it is independent of any domain or specific topology
of the environment; (2) it offers reusable core abstractions for active perception
in situated MASs, and (3) it offers support to model domain specific properties
of perception. Fig. 11 gives a high level overview of the model. The model de-

Environments for Multiagent Systems 25

Fig. 11. Model for active perception

composes active perception in three functional modules: sensing, interpreting
and filtering.

Sensing maps the state of the environment onto a representation. A rep-
resentation is defined as a structured assembly of symbols that refers back to
something in the environment, i.e. external to the agent. The mapping of state to
representation depends on two factors. First the agent can select a set of foci.
Each focus is characterized by its sensibility, but may have other properties too,
such as an operating range, a resolution etc. Focus selection enables an agent
to direct its perception, it allows it to sense the environment only for specific
types of information. E.g., in an ant-like MAS, one agent may be interested in a
“visible” perception of his environment, while another agent may be interested
in “smelling” pheromones. To sense the desired type of information, both agents
have to select a different appropriate focus. Second, the representation of the
state is composed according to a set of perceptual laws. A perceptual law is
an expression that constrains the composition of a representation according to
the requirements of the modelled domain. As such, perceptual laws are an in-
strument for the designer to model domain specific constraints on perception.
Contrary to physical sensing that incorporates such constraints naturally, such
constraints have to be modelled explicitly in software MASs. Examples are a per-
ceptual law that specifies how an area behind an obstacle is out of the scope of a
perceiving agent or a law that under certain conditions adds some noise to per-
ception. Besides the modelling of domain specific sensing, perceptual laws also
permit the designer to introduce “synthetic” constraints on perception. E.g., for
reasons of efficiency one could introduce default limits for perception in order to
restrain the amount of information the agents have to process. It is important to
notice that the model supports parallel sensing of the environment. Since agents
can select different foci simultaneously, sensing typically results in a compound
representation of the environment. This property is important to enable agents
to sense their environment in a multi-mode manner.

The second functionality of active perception is interpretation. Interpretation
maps a representation to a percept. To interpret a representation, agents use

26 D. Weyns et al.

descriptions. Descriptions are blueprints that enable agents to extract percepts
from representations. Percepts describe the sensed environment in the form of
expressions that can be understood by the internal machinery of the agent. E.g.,
consider a representation that contains a number of similar objects in a certain
area. The agent that interprets this representation may use one description to
interpret the distinguished objects and another description to interpret the group
of objects as a cluster.

The third and final functionality of active perception is filtering. By selecting
a set of filters an agent is able to select only those data items of a percept that
match specific selection criteria. Each filter imposes conditions on the elements
of a percept. These conditions determine whether the elements of a percept can
pass the filter or not. E.g., an agent that has selected a focus to perceive its
environment visually and is currently interested in only the agents within its
perceptual range can select an appropriate filter that matches only agents for
its percept.

An important remark concerns dynamism of perception. In the context of
open systems, it is important that the components of the perception system can
change (or be changed) dynamically, by the engineer or by the agents them-
selves. According to the authors, in the model for active perception, the agent
can change the set of selected foci and filters dynamically according to its ongo-
ing tasks. On the other hand, perceptual laws are pre-defined by the designer.
As such, perceptual laws can not cope with unpredictable changes in the en-
vironment. To deal with run-time changes of domain specific constraints on
perception, the model can be extended with infrastructure to adapt the set of
perceptual laws (according to the changes in the system) or to replace laws
dynamically.

Models for Actions. The classical approach to deal with actions is based
on the (environmental) transformation of states, i.e. an action is defined as a
transition of state, that is, as an operator whose execution produces a new
state. From an observational point of view, the result of the behavior of an
agent -its action- is directly modelled by modifying the environmental state
variables. Whereas this approach suffices in classical AI where only one agent is
acting, it fails for MASs were several agents are acting concurrently on a shared
environment.

In [28], J. Ferber indicates a number of weaknesses of the classical approach
to action. A first limitation is that only very elementary actions can be described.
Complex composite actions can hardly be described. A harder problem is the
static nature of actions as state transformations. Dynamic processes in the envi-
ronment, such as the evaporation of pheromones, cannot be described, only the
transformation obtained by the application of actions can. Another drawback
is the lack of (flexible) support for simultaneous actions. E.g., to deal with a
possible collision, explicit tests (as well as their possible consequences) must be
added to the action code to verify whether two agents step to the same location
or not. While the MAS community always assumes that the actions of different
agents are carried out in parallel, the classical models for action do not offer

Environments for Multiagent Systems 27

an adequate formal basis to represent collective actions. Finally, the approach
does not distinguish between the actions themselves (what the agents do) and
the consequence of the actions. Thus, traditional approaches to actions leave the
description of how actions happen aside and only take into account the results
of the actions.

Hereafter, we zoom in on two models for action that deal with these draw-
backs. First, we zoom in on the action model for situated MASs of Ferber and
Müller, described in [31]. Next, we look at the action model of Weyns and
Holvoet, described in [86], that builds upon the Ferber-Müller model. From the
scarce other work that is done on explicit models for action, we point to the work
of F. Okuyama, R. Bordini and A. da Rocha Costa [62], which presents an XML
based description language for actions and its effects, called ELMS (Environ-
ment Description Language for Multi-Agent Simulations). For more background
information on action models we refer to [28].

Synchronous Model for Action. The action model of J. Ferber and J.P. Müller
is based on three main principles. First, it distinguishes between influences and
reactions to influences. Influences come from inside the agents and are attempts
to modify the course of events in the world. Reactions, which result in state
changes, are produced by the environment by combining influences of all agents,
given the local state of the environment and the laws of the world. This clear
distinction between the products of the agents’ behavior and the reaction of the
environment enables the handling of simultaneous actions. Second, the model
decomposes the system dynamics in two parts, the dynamics of the environment
and the dynamics of the agents situated in the environment. Third, the model
describes the different dynamics of the MAS by means of abstract state machines.

Contrary to classical theories that only use the state of the world to de-
scribe evolution in a MAS, in Ferber and Müller’s model evolution is described
as the transformation of what they call dynamical state. Such a dynamical
state is defined as a tuple consisting of the state of the environment and the
set of influences simultaneously produced in the environment. The evolution of
the MAS is defined as a function called Cycle, that in each step transfers the
dynamical state to the next dynamical state. The Cycle function is further split
in two sub-functions, React and Exec. A set of laws of the world describe how
the next state of the world is computed given the previous state and the set of
influences. In addition, a set of operators is defined for the agents that allow
them to produce influences in the environment. The React function takes the
influences and according to the current state of the world and its laws, produces
the next state of the world. The Exec function produces the influences in the
next dynamical state.

To describe the overall dynamics of the system, Ferber and Müller integrate
the React and Exec functions in the Cycle function. The Cycle function then
expresses the evolution of a MAS with n agents, i.e. in each cycle the function
produces (1) a new state of the environment as reaction of the environment to the
set of produced influences and (2) a new set of influences produced by the agents
and the dynamics of the environment. A global synchronizer is responsible for the

28 D. Weyns et al.

synchronization of the cyclic evolution of the MAS. This synchronizer ensures
that, “at a given moment, all the agents are treated as acting simultaneously,
and that the environment reacts only subsequently, before handing over to the
agents in an endless loop” [28].

The Ferber-Müller model deals with complex interactions in the environment
and between agents, solving the fundamental problem of simultaneous actions in
an elegant way. Besides, the model is applicable to purely reactive agents as well
as to agents with memory. The model is basically restricted to synchronous MAS
evolution, i.e. the MAS evolves at one global pace. Because the influences of all
agents are treated as if they happened together, each influence can potentially
interfere with any other influence.

Action Model with Regional Synchronization. As an alternative to the central-
ized synchronization model of Ferber-Müller, D. Weyns and T. Holvoet [86]
propose an action model based on regional synchronization. With regional syn-
chronization, there is no longer one global synchronizer, but instead each agent
is equipped with his own local synchronizer. Each synchronizer is responsible to
handle all synchronization issues for its associated agent. Before each action, the
agent’s synchronizer synchronizes with the other synchronizers in its neighbor-
hood. The result of the synchronization algorithm is the formation of a group
of agents, called a region. Agents of the same region act simultaneously, but
independent of the other agents of the MAS. An algorithm for regional synchro-
nization is discussed in detail in [85, 88].

The action model that integrates regional synchronization, describes the dy-
namics of a MAS composed of a set of agents that exist in an environment and
act simultaneously based on their locality. Besides the actions invoked by the
agents, other activities may be going on in the environment too. In [86], such ac-
tivities are denoted as ongoing activities. Examples of ongoing activities are
a moving object or, in the context of ant-like systems, an evaporating pheromone.
Weyns and Holvoet use a different notion of dynamical state than the Ferber-
Müller model. Dynamical state is defined as a tuple consisting of the state of the
environment, and a set of consumptions. A consumption 1 is an effect from the
environment reserved for a particular agent. Such consumption results from the
reaction of the environment to the most recently produced influences for that
agent. When an agent “consumes” a consumption, the consumption can be ab-
sorbed by the agent (e.g. food that is turned into energy), the agent may simply
hold an element (e.g. an object he has picked up) or the consumption may affect
the agent’s state (e.g. the arm of a robot is wrenched through an external force).

The dynamics of the system is defined as the Cycle function that maps a
dynamical state to the next dynamical state. To clarify the activities invoked by
the agents A and the ongoing activities D in the environment on the one hand
and the reaction of the environment upon both activities on the other hand,
the Cycle function is split up in two parts. The first part is composed of two
sub-functions: ExecA and ApplyD. The second part is a single function React

1 The notion of consumption is introduced by Ferber in [28].

Environments for Multiagent Systems 29

that represents the reaction of the environment to the simultaneously performed
activity of agents and ongoing activities.

ExecA represents the activities invoked by the agents. The subset of simulta-
neous acting agents consume their consumptions and produce a set of influences
through the application of operators. The effects of the ongoing activities in the
environment are induced by the ApplyD function. Depending on the state of the
environment, the set of ongoing activities produce a set of influences in the en-
vironment through the application of a set of parallel composed operators that
are associated with the ongoing activities.

Since the activities invoked by the agents and the ongoing activities in the
environment happen simultaneously, the influences resulting from ApplyD and
ExecA have to be combined. The reaction of the environment to the simultane-
ously performed activity of the agents and the ongoing activities in the environ-
ment is described by the React function, i.e. in the state of the environment, for
the united sets of influences, and according to the set of parallel composed laws,
React determines the next state of the environment and produces a new set of
consumptions.

The evolution of the dynamical system is then defined as a sequence of cycles.
In each cycle the Cycle function transfers the dynamical state into the next
dynamical state, i.e. it produces (1) a new state of the environment and (2) a
new set of consumptions. This twofold transfer is the result of the reaction of
the environment to the execution of a set of operators invoked by a subset of
agents that exist in the system together with the application of a set of operators
resulting from the ongoing activities in the environment, given the state of the
environment, a set of consumptions, and a set of laws of the world.

Comparison. In [86], Weyns and Holvoet compare the two discussed models
for action. Two obvious differences between the models are the definition of
dynamical state and the granularity of the groups of synchronized agents. The
models are compared from the perspective of the typical execution-reaction cycle
for situated MASs, graphically depicted in Fig. 12.

Fig. 12. Comparison of the two model for action based on the execution-reaction cycle

30 D. Weyns et al.

In the Ferber-Müller model, dynamical state is composed of state and in-
fluences. As such, the dynamics of the MAS can be expressed as the reac-
tion of the environment to the set of influences and subsequently the pro-
duction of a new set of influences, given the state of the environment and
the laws of the world. So, the execution-reaction cycle runs from the point
where the influences are collected to the next point where influences are col-
lected, indicated by the “Synchronization point Ferber-Müller model” in Fig. 12.
The start of the cycle is initiated by the environment and as such the model
takes an environment-centered view on MAS evolution. The granularity of syn-
chronously acting agents in the Ferber-Müller is the whole group of agents in
the MAS. All agents act at one global pace, i.e. the influences of all agents
in each cycle are considered as happening simultaneously. Thus, in the Ferber-
Müller model, all agents synchronize in each passage of the execution-reaction
cycle at the “Synchronization point Ferber-Müller model” and act simultane-
ously.

In the regional synchronized model for action, dynamical state is composed
with state and consumptions. The dynamics of the MAS can be expressed as
the consummation of a subset of consumptions and the production of a set of
influences to which the environment subsequently reacts (according to the ap-
plicable laws) by updating its state and producing a new set of consumptions.
So in the Weyns-Holvoet model the execution-reaction cycle runs from the point
where the reactions are calculated to the next point where the reactions are
calculated, indicated by the “Synchronization point Weyns-Holvoet model” in
Fig. 12. Here the agents (on a per region basis) take the initiative to start their
cycles, and as such the model takes an agent-centered view of MAS evolution.
In this model agents of different regions can consume their consumptions in-
dependently and run asynchronously through the execution-reaction cycle. In
the Weyns-Holvoet model, the granularity of synchronous acting agents are re-
gions of synchronized agents. Influences of agents within a region are considered
as happening simultaneously, however different regions can act asynchronously.
Thus, in the Weyns-Holvoet model, in each passage of the execution-reaction
cycle agents synchronize at the “Synchronization point Weyns-Holvoet model”
and form regions that act simultaneously.

Task Environments. In [93], M. Wooldridge defines a task environment as
a tuple < Env, Ψ >. An environment Env is a triple Env = < E, e0, τ >, where
E is a set of environment states, e0 ∈ E is an initial state, and τ is a state
transformer function. Ψ : R → {0, 1} is a predicate over runs. A run r ∈ R of
an agent in an environment is a sequence of interleaved environment states and
actions, i.e.:

r : e0
α0→ e1

α1→ e2
α2→ . . .

αu−1→ eu

with ei ∈ E the set of environment states and αj ∈ Ac the set of actions available
to the agents. A task environment thus specifies:

Environments for Multiagent Systems 31

– The properties of the system the agent will inhabit, i..e. the environment
Env.

– The criteria by which an agent either failed or succeeded in its task, i.e. the
specification Ψ .

According to Wooldridge, the most common types of tasks are achievement
tasks, those of the form “achieve a state of affairs”, and maintenance tasks
of the form “maintain a state of affairs”. An achievement task is specified by
a number of goal states. The agent is required to bring about one of these
goal states. A well-known achievement task environment is the blocks world,
see e.g. [73]. A maintenance task environment is a task environment in which
an agent is required to keep (or avoid) some state of affairs. A simple example
is a software agent which task it is to maintain the set of available services
in a particular context. Complex tasks might be specified by combinations of
achievement and maintenance tasks.

A well-known model for task environments is the TAEMS framework (Task
Analysis, Environment Modelling, and Simulation), developed by K. Decker and
V. Lesser [43]. TAEMS can be used to specify, reason about, analyze, and sim-
ulate task environments. TAEMS is independent of the agent architecture and
the inherent nature of the modelled domain. For details, we refer to [80].

3.4 Environments in Agent-Oriented Methodologies

Popular methodologies such as Message [25], Prometheus [66] or Tropos [12] offer
support for some basic elements of the environment, however they do not consider
the environment as a first-class entity. To our knowledge, the only methodology
for analysis and design of MASs that considers the environment as a primary
abstraction is the extended version of Gaia described in [94]. F. Zambonelli and
his colleagues state that “identifying and modelling the environment involves
determining all the entities and resources that the MAS can exploit, control
or consume when it is working towards the achievement of the organizational
goal.” The authors distinguish between computational (or virtual) environments
(e.g. a Web site) and physical environments (e.g. a manufacturing pipeline). A
list of issues is put forward that has to be taken into consideration during the
environmental modelling phase:

1. What are the environmental resources that agents can effectively sense and
effect? The environment model should distinguish between the existence and
the (possibly constrained) accessibility of a resource.

2. How should the agent perceive the environment? This question refers to the
representation of the environment according to given circumstances.

3. What of the existing scenario should be characterized as part of the envi-
ronment? The distinction between the agents and the environment is not
always clear cut. For dynamic environmental resources, the designer has to
decide whether they should be modelled as agents or as dynamic resources
in the environment.

32 D. Weyns et al.

In Gaia, the identification of the environmental model is part of the analy-
sis phase and is intended to yield an abstract, computational representation of
the environment in which the MAS will be situated. During the subsequent ar-
chitectural design phase, the output of the environmental model (together with
a primary role model, a preliminary interactions model and a set of organiza-
tional rules) is integrated in the system’s organizational structure that includes
the real-world organization (if any) in which the MAS is situated. The organi-
zational structure is then used to complete the preliminary role and interaction
models. During the detailed (and final) design phase, the definition of the agent
model and services model are derived from the completed role and interaction
models. According to the authors, Gaia does not commit itself to specific tech-
niques for modelling roles, environment and interactions etc. The outcome of the
Gaia process is a technology-neutral specification that should be easily imple-
mented using an appropriate agent-programming framework of a modern object
or a component-based framework. With respect to the development of the envi-
ronmental model, the authors state “it is difficult to provide general modelling ab-
stractions and general techniques because the environments for different applica-
tions can be very different in nature and also because they are somehow related to
the underlying technology.” Therefore the authors propose a “reasonable general
approach (without the ambition to be universal), and treat the environment in
terms of abstract computational resources, such as variables or tuples, made avail-
able to the agents for sensing (e.g. reading their values), for affecting (e.g. chang-
ing their values) and for consuming (e.g. extracting them from the environment).”
As such the environmental model is represented as a list of resources, each asso-
ciated with a symbolic name, characterized by the type of actions that the agent
can perform on it and possibly associated with additional textual comments and
descriptions. A notation is used that is based on the Fusion [19] notation, e.g. :

reads V ar1 //readable resource of the environment
V ar2 //another readable resource

changes V ar3 //a variable that can also be changed by the agent

The authors indicate that “in realistic development scenarios, the analyst
would choose to provide a more detailed and structured view of environmental
resources.” In particular, specific issues related to the modelling of environmen-
tal resources may be required to enrich/complement the basic notation. Some
examples are:

– the representation of the logical/physical relationships between the resources
in the environment. A graphical schema may be of help to model and to
identify how and from where a resource can be accessed.

– the dynamics of the environment. The authors propose additional annota-
tions to the basic notation to deal with this issue.

– dealing with a priori unknown availability of resources. The authors suggest
an associative access model as the Linda tuple space to suit this purpose.

To deal with active components (services and computer-based systems) as
part of the operational environment, the authors give some general guidelines.

Environments for Multiagent Systems 33

When the role of the active components is simply that of a data provider (e.g. a
Web server or a computer-based sensor), they should be modelled in terms of
resources. However, if the environment contains components that are capable
to perform complex operations (e.g. active databases or active control systems),
the components should not be treated as part of the environment but, instead,
they should be agentified.

4 Concerns for Environments

The survey described in the previous section shows us that the environment
includes a broad diversity of functionalities. In this section we extract a number
of core concerns for environments from the survey. We focus on concerns that
represent logical functionalities of the environment.

As we already mentioned in the introduction section, researchers have highly
different views on the concept of environment, causing a lot of confusing what
the environment comprises. As a start to disentangle the confusion, we propose
a 3-layer model for MASs2 as depicted in Fig. 13.

Fig. 13. 3-layer model for MASs

The MAS Application layer typically consists of two sub-layers: (1) the do-
main specific application logic containing the Application Environment with

2 The focus of the proposed model is first of all on software agents.

34 D. Weyns et al.

the embedded Agents, and (2) a supporting MAS framework that offers high-
level programming abstractions for the MAS developer such as support for com-
munication or a pheromone infrastructure. The MAS Application runs on top of
an “Execution Platform” that typically is composed of a generic (distributed)
Middleware infrastructure and Virtual Machines that execute on top of an Op-
erating System. The Execution Platform is mapped onto the “Physical Infras-
tructure” that comprises the hosts with processors and the connecting Network
Infrastructure.

In [51], K. Mertens and his colleagues identify two levels of environments:
the “application environment” and the “execution environment.” According to
the authors, the application environment provides the context for the agents to
perform their actions, to communicate with one another and to acquire informa-
tion about the problem they have to solve. The application environment is the
translation of the problem situation, e.g. a grid world with tiles and holes for the
Tileworld or a graph structure of locations with accessible files for a peer-to-peer
file sharing system. The execution environment is the platform that is used to
execute the MAS. The execution environment is mapped onto the physical lay-
out of the hardware, e.g. a JVM that is mapped onto a single host or a number
of JVMs mapped on different hosts. Whereas in Mertens’ model of the environ-
ment, the agents are externally connected to the application environment, we
have placed the agents inside the Application Environment emphasizing (1) that
agents are inextricably bound up with their environment, and (2) that agents
together with the Application Environment form an abstraction layer (and run)
on top of an Execution Platform that maps onto a Physical Infrastructure.

The concerns of the environment we discuss in this section are located in the
MAS Application layer, i.e. the top layer in Fig. 13. We distinguish between two
classes of concerns: concerns related to the structure of the environment and
concerns related to activity in the environment. Several concerns may seem to
be quite natural functionalities for environments. We want to stress, however,
that in practice the concerns we put forward are often dealt with in an implicit
or ad hoc way. Our goal is to make the logical functionalities explicit, i.e. as
concerns of environments as first-class entities. Not every concern we discuss is
relevant for every possible MAS environment. The set of concerns should rather
be viewed as a portfolio of logical functionalities for which the environment may
have a “natural responsibility.” In practice, it is up to the designer to decide
which concerns should be integrated in the environment model for the domain
at hand. As a final remark, we want to underline that the proposed list of
concerns is not intended to be complete. Our goal is to give an initial impetus
to explore the rich potential of environments for MASs. In the next section we
discuss a number of research challenges that may serve as a source of inspiration
for further exploration.

4.1 Concerns Related to the Structure of the Environment

We start with discussing a number of concerns related to structural features of
the environment. Successively we look at structuring, resources and ontology.

Environments for Multiagent Systems 35

Structuring. Agents and objects of a MAS share a common environment. The
agents as well as the objects are dynamically interrelated to each other. It is
the role of the environment to define the rules under which these relationships
can exist and can evolve. As such the environment acts as a structuring entity
for the MAS. This structuring can take different forms: it can be spatial, see
e.g. [5, 13, 7, 54], but also organizational, e.g. [30, 94], or the environment can be
structured as a mediating entity as e.g. in [16, 57, 74]. Structuring is a funda-
mental functionality of the environment. The structure of the environment is a
design choice that depends upon the requirements of the domain at hand, and
should be dealt with explicitly.

Resources. Besides the agents, an environment typically comprises different
types of objects or (logical) resources. It is a responsibility of the environment
to control the access to the resources. In general, resources can be read/perceived,
writed/modified or consumed by agents. The extent to which agents are able to
access a particular resource may depend on several factors such as the nature
of the resource itself, the resource’s current relationship to other resources or
agents, the neighborhood of the agent to the resource, the capabilities of the
agent etc. In general, the access to the resources can be described by a set of
laws defined by the domain at hand, see e.g. [28, 86].

Ontology. In [17], P. Chang and his colleagues state: “agents must be able to
understand their environment.” Therefore, an environment must specify an on-
tology that provides a conceptual representation of the domain at hand. The
ontology must cover the structure of the environment as well as the observ-
able characteristics of objects, resources and agents, and their interrelationships.
For symbolically-oriented agents, an explicit ontology should be available to the
agents to enable them to interpret their environment and reason about it. For
reactive/behavior-based/stigmergic agents, the designer/developer applies the
ontology to encode the agents’ internal structures. As such, these kinds of agents
have an implicit ontology that enables them to make decisions.

4.2 Concerns Related to the Activity in the Environment

Next we discuss a number of concerns related to activity performed in the envi-
ronment. First we look at concerns related to activity produced by the agents:
communication, actions and perception. We conclude with the responsibilities of
the environment related to activity produced by resources or objects.

Communication. As stated in the state-of-the-art overview, communication is
inextricably bound up with MASs. Communication can take very different forms,
ranging from direct message transfer over anonymous mediated communication
via a shared space to indirect communication through stigmergy. Each of these
types of communication has its own pros and cons. Designers should be aware
of the potency as well as the impact of each type of communication for their
solution. Selecting a particular type of communication should be an architectural
choice, determined by the requirements of the problem domain at hand.

36 D. Weyns et al.

Actions. Dealing with actions in MASs in general is a very complex matter. If
we allow multiple agents to act in the environment in parallel, we need explicit
models to deal with actions that range far beyond the scope of state changes
based on simple individual manipulation of objects. More than a decade ago,
S. Hanks, M. Pollack and P. Cohen already raised in [42] the problem of “how the
effects of simultaneous actions differ from the effects of those actions performed
sequentially.” In the state-of-the-art section we discussed a couple of models
for action for MASs. Central to these models are (1) the distinction between
the products of the agents’ behavior on the one hand and the reaction of the
environment on the other hand, and (2) a set of explicitly defined laws that
govern the effects of the actions of the agents. These models resolve a number
of fundamental issues with respect to actions in MASs, however, dealing with
actions in MAS needs extensive further research to grow into full maturity.

Perception. Perception implies that the environment must be an observable
entity. Agents must be able to inspect their neighborhood. In general, agents
should be able to inspect the environment according to their current preferences.
In the state-of-the-art overview, we discussed several examples of selective per-
ception, such as “foci” proposed in [89] or “views” as proposed in [47] and [74].
Perception is constrained not only by agents’ capabilities, but also by environ-
mental properties (which in fact reflect properties of the problem domain). In
[89] the environmental constraints are made explicit in the form of “perceptual
laws”. As for action models, there is still a wide (unexplored) field open to the
concern of perception.

Environmental Processes. Besides the activity of the agents, resources or
objects can produce activity in the environment too. A digital pheromone, for
example, is a dynamic structure as it aggregates with additional pheromone that
is dropped, it diffuses in space and it evaporates over time. Other examples are
a rolling ball that moves on, or the local temperature that evolves over time.
Maintaining such dynamics is an important functionality of the environment,
see e.g. [13, 86].

5 Challenges

To conclude this paper, we list a number of research challenges that, in our
opinion, are important for the further exploration of environments for MAS. We
have divided the list in three categories: issues with respect to the definition
and scope of environments, issues with respect to the interrelationship between
agents and their environment, and finally issues concerning the engineering of
environments for MASs.

5.1 Definition and Scope of Environments

In Sect. 2, we noted that the term “environment” is vague and ill-defined in
relation to MASs. An ongoing research challenge will be developing a clearer

Environments for Multiagent Systems 37

understanding of what we mean by an “environment.” Defining anything requires
relating it to other entities. In the case of environments, their definition requires
relating them first to the agents that inhabit them, then to one another, and
finally to different application domains.

Environments and Agents. What is the difference between the environment
and the agents that inhabit it? A wide variety of distinctions have been proposed.
Here are only a few examples:

– What the developer writes for a specific application are the agents. The soft-
ware or hardware infrastructure on which the agents run is the environment.

– The environment provides the logical context for the agents to perform their
actions, to communicate with one another and to acquire information about
the problem they have to solve.

– Agents are autonomous, in that they proactively pursue objectives. The en-
vironment has no objectives.

– In a refinement of the previous suggestion, agents have achievement goals,
while the environment can have only maintenance goals.

– The environment is extensive and unbounded, while the agents are bounded
and localized in the environment.

– The environment embodies the given dynamics or “laws of physics” of a
problem domain. The agents react to those laws in contingent ways.

– The environment is open to inspection. Individual agents are opaque. In
other words, the environment implements what everyone is presumed to be
able to see about the domain, while agents hide local decisions that should
not be open to direct inspection or manipulation by others.

Each of these distinctions (and others that might be proposed) will yield
different conclusions about the relative responsibilities of the agents and the
environment, how they are mapped onto a given problem domain, and the life
cycle of the design and implementation of a real system. These distinctions
deserve formalization and analysis. Certainly, they are not orthogonal to one
another. How many truly distinct views are there of the relation between agent
and environment?

Taxonomy of Environments. With a formal understanding of the different
ways that agents can be related to their environment, we can then classify en-
vironments with respect to one another. This level of understanding will enable
researchers to be sure that they are talking about the same kind of environment
in describing their systems and arguing for the relative merits of alternative
approaches.

Environments and Domains. One reason that definitions of “environment”
have proliferated is that MASs have been applied to a wide range of different
applications domains, which impose differing constraints and afford different
resources for interactions among agents. For example, it is natural for designers
of a MAS intended to provide packet routing and quality of service management
on a communications network to associate the environment with the existing

38 D. Weyns et al.

infrastructure of hardware and software that makes up the network and on which
the agents will have to execute. In another domain, such as an agent-based
simulation of an ecosystem, the environment as well as the agents will be custom-
built for the application, and the distinction between agent and environment
will be driven more by the differences between bounded vs. unbounded scope
and given vs. contingent dynamics. In yet another domain, such as electronic
commerce, the distinction between a transparent environment and opaque agents
that can hide proprietary details of individual participants becomes paramount.

With a taxonomy of environments in hand, we can begin to develop system-
atic principles for relating a specific kind of environment to a particular domain.
A number of research questions address the question of the relation between a
taxonomy of environments and a taxonomy of domains. These include:

– Are there domains that do not need an explicit distinction between environ-
ment and agent?

– Are there domains that are particularly well suited to this distinction?
– What features of domains make them particularly amenable or hostile to

this distinction?
– Are there particular functions of environments that are valuable regardless

of the application domain?
– In general, how can a specification of a domain be mapped to a specifica-

tion of a particular environment that will best support MASs serving that
domain?

5.2 Agent-Environment Interrelationship

As our understanding of the space of possible environments becomes more re-
fined, we need to explore in more detail the relation between agents and their
environments. This relationship can be elaborated along at least three dimen-
sions: architecture, protocol, and topology.

Architecture. In many applications, both agents and their environment will
be software running on some physical computing system. What is the relation-
ship between the agent software, the environment software, and the software and
hardware that make up the computational substrate? In some cases, the agents
may be completely dependent on the environment for their access to compu-
tational services, so that the environment (whatever other services it provides)
becomes an “operating system” for the agents. In other cases, agents and the en-
vironment may have independent access to computational services (perhaps on
different physical CPU’s, as in robotic applications), and will interact with one
another as computational peers. In this latter case, the question of how to dis-
tinguish the agents from the environment becomes particularly important, since
at one level the environment is just another program executing architecturally
at the same level as the agents.

These two cases are not mutually exclusive. One can imagine an architecture
in which agents and environment execute on separate CPU’s, but in which some
services (such as inter-agent communications) are only available through the

Environments for Multiagent Systems 39

shared environment. Still other configurations are possible, such as the case
of a purely physical two-dimensional arena that provides the environment for
soccer robots. The exploration of architectural alternatives for relating agents to
environments offers ample scope for a new discipline within software engineering.

Protocol. By “protocol,” we mean the set of conventions by which agents in-
teract with the environment. The issue of protocol governs the degree to which
an environment is open to heterogeneous agents, or to agents that are designed
without advance knowledge of the environment. Protocols can vary along at least
two dimensions: physical vs. digital and natural vs. arbitrary.

– In a physical protocol, agents must have physical sensors and effectors that
can change and sense the state of the physical world. In a digital protocol,
agents need only a way to read and write a register, such as a message
mailbox or a communication channel.

– In a natural protocol, the structure of the interaction is constrained by the
broader laws of physics, and any agent that complies with these laws can
interact. In an arbitrary protocol, the signs exchanged by the agents are
defined by some engineered language that each agent must understand in
order to interact. The more natural the protocol, the more open the system
will be to other agents that were constructed without detailed knowledge of
the environment.

All four combinations of these dimensions are possible, illustrated in Tab. 1.

Table 1. Taxonomy of agent-environment protocols, with examples

This taxonomy of agent-environment protocols is very preliminary, and offers
several directions for further research:

– What other dimensions distinguish the different ways in which agents inter-
act with their environments?

– How do those dimensions impact the degree to which the system is open or
closed?

40 D. Weyns et al.

– What responsibilities does the environment have, and what services can it
provide, to increase its openness to heterogeneous agents?

– Alternatively, in applications that must be highly secure, how can environ-
ments ensure that only authorized agents have access to their services?

Topology. One characteristic of many environments is that they define a topol-
ogy within which agents exist locally. A soccer agent is at only one location
within the arena; a network agent lives on a specific router; an information re-
trieval agent visits only one database at a time. Such topological constraints can
simplify agent reasoning (by restricting the range of information an agent must
consider to that which is locally available) and system deployment (by restrict-
ing interaction to nearby entities and thus enabling the use of low-bandwidth
communications), but may also pose challenges in achieving timely, long-range
interactions. Research questions involving the relation between agents and the
environment’s topology include:
– What topologies does each kind of environment naturally induce? In robotics,

environments naturally conform to low-dimensional manifolds, such as the
surface of the earth or (for flying robots) the atmosphere. Computer networks
cannot be mapped to such manifolds, but are typically power-law graphs [8]
or more complex structures [3]. In some information retrieval applications,
the topology may conform to the semantic structure of natural language [84].

– What does it mean for an agent to be “local” in an environment? In other
words, how should the topology constrain agent actions? In some cases,
agents may be able to access information only about their current location
in the topology, but may be able to communicate with other agents that are
remote from them. In other cases, direct inter-agent communications may
be restricted to agents at the same location.

– What constraints do different topologies impose on agent interactions with
the environment, and with one another through the environment? The ex-
istence of such phenomena as small-world shortcuts or highly varying node
degrees can lead to interactions that vary widely from what our intuitions
lead us to expect in low-dimensional manifolds or planar graphs.

– What is the environment’s responsibility with regard to locality? Is it re-
sponsible, for instance, to enforce locality of agent interaction? Should all
agents be equally localized, or can agents have different degrees of scope?
For example, in a tree-structured environment, one can imagine that each
agent can interact directly with all agents at its nodes and at lower-level
nodes. How should agent scope be related to environment structure?

5.3 Engineering Environments

The previous two areas of research challenges provide ample scope for theoretical
exploration, andwill lead tomany intriguing intellectual issues.Theultimate social
benefit fromthese insights, though, requires their application to concrete problems,
and the challenge of engineering environments for such problems will pose signifi-
cant challenges in both the design and implementation of practical systems.

Environments for Multiagent Systems 41

Design. Disciplined design practices for agents in general are in their infancy,
and extending these techniques to environments greatly increases the scope of
work to be done. A first step is gaining recognition for environments as first-class
entities in MAS design. A number of the points discussed above directly impact
design, such as how different sorts of domains map to different types of environ-
ments, and how agents are related to their environments. The results of studies
in these areas need to be captured in tools such as description languages and
other representational mechanisms that will enable engineers to communicate
unambiguously about alternative designs. In many cases, the environment may
incorporate physical as well as digital elements, and design tools need to support
the integration of these domains.

Implementation. The growth of agent-oriented programming led to the prolif-
eration of frameworks and development platforms for agents. Similarly, growing
recognition of the importance of environments will stimulate extensions to these
tools, or even the development of new tools that can support environments within
which agents from different platforms can interact. Inevitably, embodying the
services of an environment in a platform will collapse some of the dimensions
we have explored in the previous paragraphs. For example, it is unlikely that
a single platform will support all of the architectural options discussed above.
The success of rival platforms in the market will itself be an important tool to
assessing which of these dimensions are most important for practical use, and
which can safely be removed from the developer’s inventory. A critical question
for implementation concerns the relationship between the logical and physical
distribution of the environment. In some cases, it will make sense for an environ-
ment that represents a physically distributed topology to be distributed physi-
cally itself, while in other cases many of the benefits of the agent-environment
distinction can be retained even if the environment is hosted on a single ma-
chine.

In sum, recognizing the distinction between agent and environment opens
up new horizons for research and development comparable to those inaugurated
by the development of the agent metaphor itself in the 1990’s. These sugges-
tions may help to inspire the next generation of researchers to explore direc-
tions that, at this point, seem the most promising. A measure of their success
will be the degree to which the natural momentum of the research community
overtakes them and leads to a self-sustaining body of science and technology
that recognizes environments as first–class entities in the study of multi-agent
systems.

6 Conclusions

Environments for MASs are too often assigned limited responsibilities, overlook-
ing a rich potential for the paradigm of MASs. In this paper we have given a
survey on the use of environments for MASs. From the study we learned that
environments include a broad diversity of functionalities.

42 D. Weyns et al.

We used the insights from the survey to extract a first set of general concerns
for environments, each concern representing a particular logical functionality for
environments. A fundamental concern of the environment is that it structures
the MAS. The environmental structuring can take different forms, such as spacial
or organizational. Since agents must be able to understand their environment,
an explicit ontology is required that covers the structure of the environment
as well as the observable characteristics of objects, resources and agents, and
their interrelationships. Besides structural aspects, we identified a set of con-
cerns related to the activity in the environment. The most common activity
of agents in the environment is communication. We discussed several types of
communication for MASs. The designer should be aware of the potency as well
as the impact of each form of communication and select the appropriate form
according to the requirements of the problem domain. Next to communication,
agents typically perform actions in the environment. It is the responsibility of
the environment to define the rules for, and enforce the effects of, the agents’
actions. Agents must also be able to perceive their environment. As such, the
environment is an observable entity, contrary to the agents themselves. The en-
vironment should enable agents to observe their neighborhood according to their
preferences, however, perception is constrained by environmental properties that
reflect limitations in the modelled domain. Finally, we clarified that agents are
not the only entities that can produce activity in the environment. Objects or
resources too may be active in the environment (for example, a pheromone or
a moving object). Maintaining such dynamics is an important responsibility of
the environment.

The set of concerns we have proposed is not complete, but intended as a start
to make the potential responsibilities for environments for MAS explicit. We
listed a number of research challenges that may serve as a source of inspiration
for further exploration.

We hope that this paper may contribute to extend the exploration of envi-
ronments for MASs. Environments carry a rich potential for the paradigm of
MASs. However, as long as researchers and software developers limit the func-
tionality of environments, or deal with its responsibilities in an implicit or ad
hoc manner, the full potential of environments will not be revealed. To discover
and exploit the full potential of environments, we must treat environments as
first-class entities. Recognizing environments as first-class entities opens up new
horizons for research and development in MASs.

Acknowledgments

We would like to thank the attendees of the First International Workshop on
Environments for Multiagent Systems [26] for the valuable discussions that have
contribute to the work presented in this paper. A special word of appreciation
also goes to Kurt Schelfthout, Alexander Helleboogh and Guiseppe Vizzari for
their kind cooperation.

Environments for Multiagent Systems 43

References

1. Aglets: http://www.trl.ibm.com/aglets/
2. Ajanta: http://www.cs.umn.edu/Ajanta/home.html
3. Alderson, D., Doyle, J., Govindan, R., Willinger, W.: Toward an Optimization-

Driven Framework for Designing and Generating Realistic Internet Topologies.
ACM SIGCOMM Computer Communications Review (2003)

4. Amiguet, M., Müller, J.P., Baez-Barranco, J.A., Nagy, A.: The MOCA Platform.
Multi-Agent-Based Simulation II, Lecture Notes in Computer Science, Vol. 2581.
Springer-Verlag, Berlin Heidelberg New York (2003)

5. Bandini, S., Manzoni S., Simone C.: Dealing with Space in Multi-Agent Systems:
a Model for Situated MAS. Second International Joint Conference on Autonomous
Agents and Multiagent Systems, ACM Press, Bologna, Italy (2002)

6. Bandini, S., Manzoni, S., Simone, C.: Heterogeneous agents situated in heteroge-
neous spaces. Applied Artificial Intelligence, Taylor & Francis 16(9-10) (2002)

7. Bandini, S., Manzoni, S., Vizzari, G.: A Spatially Dependant Communication
Model for Ubiquitous Systems. First International Workshop on Environments
for Multiagent Systems, New York (2004)

8. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science,
286(509) (1999)

9. Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Framework.
4th International Conference on Practical Application of Intelligent Agents and
Multi-Agent Technology, (1999)

10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. SFI Studies in the Sciences of Complexity, Oxford University
Press (1999)

11. Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz P., Theraulaz, G.: Routing
in Telecommunications Networks with “Smart” Ant-Like Agents. Intelligent Agents
for Telecommunications Applications (1998)

12. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perrini, A.: Tropos:
an Agent-Oriented Software Development Methodology. Technical Report DIT-
02-0015, University of Trento, Italy (2002)

13. Brueckner, S.: Return from the Ant. PhD Dissertation, Humboldt-Universität
Berlin, Germany (2000)

14. Busi, N., Zavattaro, G.: On the Serializability of Transactions in JavaSpaces. Elec-
tronic Notes Theoretical Computer Science, Vol. 54 (2001)

15. Cabri, G., Leonardi L., Zambonelli, F.: MARS: a Programmable Coordination
Architectue for Mobile Agents. IEEE Internet Computing (2000)

16. Gelernter, D., Carrierro, D.: Coordination Languages and their Significance. Com-
munications of the ACM, 35(2) (1992)

17. Chang, P., Chen, K., Chien, Y., Kao, E., Soo, V.: From Reality to Mind: A Cog-
nitive Middle Layer of Environment Concepts for Believable Agents. First Inter-
national Workshop on Environments for Multiagent Systems, New York, 2004.

18. Cheyer, A., Martin, D.: The Open Agent Architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1) (2001)

19. Coleman, D., Arnold, P., Bodoff, S., Dollin, D., Hayes, H., Jeremas, P.: Object Ori-
ented Development: the Fusion Method. Prentice-Hall International, Hemel Hamp-
stead, UK (1994)

20. Corkill, D.: Collaborating Software. International Lisp Conference, New York
(2003)

44 D. Weyns et al.

21. Demazeau, Y., Rocha Costa, A.C.: Populations and organizations in open multi-
agent systems. 1st National Symposium on Parallel and Distributed AI (1996)

22. Dijkstra, J., Timmermans, H.J.P., Jessurun, A.J.: A Multi–Agent Cellular Au-
tomata System for Visualising Simulated Pedestrian Activity. 4th International
Conference on Cellular Automata for Research and Industry (2001)

23. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1) (1996)

24. Englemore, R.S., Morgan, A. (eds.): Blackboard Systems. Addison-Wesley (1988)
25. Evans, R., Kearney, P., Caire, G., Garijo, F., Gomez Sanz, J., Pavon, J., Leal, F.,

Chainho, P., Massonet, P.: MESSAGE: Methodology for Engineering Systems of
Software Agents. EURESCOM, EDIN 0223-0907 (2001)

26. E4MAS: First International Workshop on Environments for Multiagent Systems.
New York (2004) http://www.cs.kuleuven.ac.be/˜ distrinet/events/e4mas/

27. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
28. Ferber, J.: Multi-Agent Systems, An Introduction to Distributed Artificial Intelli-

gence. Addison-Wesley, ISBN 0-201-36048-9, Great Britain (1999)
29. Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Orga-

nizations in Multi-Agent Systems. 3rd International Conference on Multi Agent
Systems, Paris, France (1998)

30. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-
zational View of Multi-Agent Systems. Agent-Oriented Software Engineering IV.
Springer-Verlag, Berlin Heidelberg New York (2003)

31. Ferber, J., Müller, J.P.: Influences and Reaction: a Model of Situated Multiagent
Systems. 2th International Conference on Multi-agent Systems, Japan, AAAI Press
(1996)

32. Ferber, J., Michel, F.: Integrating Environments with Organization-Centered Mul-
tiagent Systems, Environments for Multiagent Systems, Weyns, D., Parunak,
H.V.D, Michel, F. (Eds.), Lecture Notes in Artificial Intelligence Vol. 3477, Berlin
Heidelberg New York, Springer (2005)

33. Finin, T., Labrou, Y., Mayfield, J.: KQLM as an Agent Communication Language.
Software Agents, MIT Press (1997)

34. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/
35. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns an Practice.

The Jini Technology Series, Addison-Wesley (1999)
36. Free On-Line Dictionary of Computing. http://foldoc.doc.ic.ac.uk/foldoc/

index.html
37. Gasser, L.: Perspectives on Organizations in Multi-Agent Systems, Multi-Agent

Systems and Applications: 9th ECCAI Advanced Course ACAI 2001 and Agent
Link’s 3rd European Agent Systems Summer School, EASSS. Luck, M., Mark, V.,
Stpnkov, O., Trappl, R. (Eds.), Lecture Notes in Artificial Intelligence, Vol. 2086.
Berlin Heidelberg New York, Springer (2001)

38. Grassé, P.P.: La Reconstruction du nid et les Coordinations Inter-Individuelles
chez Bellicositermes Natalensis et Cubitermes sp. La theorie de la Stigmergie: Essai
d’interpretation du Comportement des Termites Constructeurs. Insectes Sociaux,
Vol. 6 (1959)

39. Grasshopper: http://www.grasshopper.de/
40. Guérin, S.: Optimisation multiagents en environment dynamic: application au

routage dans les réseaux de télécommunications. Dissertation, University of Rennes
I and Ecole Nationale Supérieure des Télécommunications de Bretange (1997)

Environments for Multiagent Systems 45

41. Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems, 5th International Conference on Autonomous agents,
Montreal, Quebec, Canada, ACM Press (2001)

42. Hanks, S., Pollack, M., Cohen, P.: Benchmarks, Testbeds, Controlled Experimen-
tation, and the Design of Agent Architectures, AI Magazine 14(4) (1993)

43. Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker,
K., Garvey, A.: The Taems White Paper, Multi-Agent Systems Lab University of
Massachusetts.

44. Howden, W., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents,
http://www.agent-software.com/shared/home/

45. Huhns, M.N., Stephens, L.M.: Multi-Agent Systems and Societies of Agents.
G. Weiss (ed.), Multi-agent Systems, ISBN 0-262-23203-0, MIT press (1999)

46. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2),
Elsevier Science Publishers (2000)

47. Julien, C., Roman, G.C.: Egocentric Context-Aware Programming in Ad Hoc Mo-
bile Environments. 10th International Symposium on the Foundations of Software
Engineering, Charleston, USA (2002)

48. Mamei, M., Leonardi, L., Zambonelli, F.: Co-Fields: Towards a Unifying Approach
to the Engineering of Swarm Intelligent Systems. Lecture Notes in Artificial Intel-
ligence Vol. 2577. Springer-Verlag, Berling Heidelberg New York (2003)

49. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples On The Air: A Middleware for
Context-Aware Computing in Dynamic Networks. ICDCS Workshops (2003)

50. Manzoni, S., Nunnari, F., Vizzari, G.: Towards a Model for Ubiquitous and Mo-
bile Computing. Theory And Practice of Open Computational Systems, TAPOCS.
IEEE Computer Society (2004)

51. Mertens, K., Holvoet, T., Berbers, Y.: Adaptation in a Distributed Environment,
First International Workshop on Environments for Multiagent Systems, New York
(2004)

52. Michel, F., Ferber, J., Gutknecht, O.: Generic Simulation Tools Based on MAS
Organization, 10th European Workshop on Modelling Autonomous Agents in a
Multi Agent World MAMAAW’01, Annecy, France (2001)

53. Michel, F., Gouaich, A., Ferber, J.: Weak Interaction and Strong Interaction
in Agent Based Simulations. 4th Workshop on Multi-Agent Based Simulation,
MABS’03 at AAMAS 2003, Melbourne, Australia (2003)

54. Mili, R., Leask, G., Shakya, U., Steiner, R., Oladimeje, E.: Architectural Design
of the DIVAS Environment. First International Workshop on Environments for
Multiagent Systems, New York (2004)

55. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system:
A toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe
Institute (1996)

56. Montresor, A.: Anthill: a Framework for the Design and Analysis of Peer-to-Peer
Systems. 4th European Research Seminar on Advances in Distributed Systems,
Bertinoro, Italy (2001)

57. Murphy, A., Picco, G.P., Roman, G.C.: LIME: a Middleware for Physical and
Logical Mobility. 21th International Conference on Distributed Computing Systems
(2001)

58. Nwana, S., Ndumu, D.T., Lee, L.C., Collis, J.C.: Zeus: A Toolkit for Building
Distributed Multi-Agent Systems. 3th International Conference on Autonomous
Agents, Seattle, WA, USA (1999)

46 D. Weyns et al.

59. Odell, J., Parunak, H.V.D., Breuckner, S., Fleischer, M.: Temporal Aspects of
Dynamic Role Assignment. Agent-Oriented Software Engineering IV: 4th Interna-
tional Workshop, Melbourne, Australia. Springer-Verlag, Berlin Heidelberg New
York (2003)

60. Odell, J., Parunak, H.V.D., Fleischer, M.: The Role of Roles in Designing Effective
Agent Organizations. Software Engineering for Large-Scale Multi-Agent Systems,
Lecture Notes in Computer Science Vol. 2603. Springer-Verlag, Berlin Heidelberg
New York (2003)

61. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling Agents and their
Environment. Agent-Oriented Software Engineering III, Giunchiglia, F., Odell, J.,
Weiss, G. (eds.) Lecture Notes in Computer Science, Vol. 2585. Springer-Verlag,
Berlin Heidelberg New York (2002)

62. Okuyama, F., Bordini, R., da Rocha Costa, A.C.: ELMS: An Environment De-
scription Language for Multiagent Simulation. First International Workshop on
Environments for Multiagent Systems, New York (2004)

63. OMG MASIF: http://www.fokus.gmd.de/research/cc/ecco/masif/index.html
64. Omicini, A., Ricci, A., Viroli, R., Castelfranci, C., Tummolini, L.: Coordination Ar-

tifacts: Environment-based Coordination for Autonomous Agents, 3th Joint Con-
ference on Autonomous Agents and Multi-agent Systems, ACM Press, New York
(2004)

65. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf R., (eds.): Coordination of
Internet Agents: Models, Technologies and Applications. Springer Verlag, Berlin
Heidelberg New York (2001)

66. Padgham, L., Winikoff, M.: Prometheus: A methodology for Developing Intelligent
Agents. 3th Agent-Oriented Software Engineering Workshop, Bologna, Italy (2002)

67. Parunak, H.V.D.: Altarum Institute, http://www.altarum.net/˜ vparunak/
68. Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-

tems. Annals of Operations Research, Vol. 75 (1997)
69. Parunak, H.V.D., Brueckner, S., Fleischer, M., Odell, J.: A Design Taxonomy of

Multi-Agent Interactions. Agent-Oriented Software Engineering IV, Melbourne.
Springer-Verlag, Berlin Heidelberg New York (2003)

70. Parunak, H.V.D., Odell, J.: Representing social structures in UML, Agent-Oriented
Software Engineering II, Wooldridge, M., Weiss, G., Ciancarini, P. (Eds.) Lectue
Notes in Computer Science Vol. 2222, Berlin Hiedelberg New York, Springer (2002)

71. RoboCup: http://www.robocup.org/
72. Rockwell: http://www.rockwell.com/
73. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Prentice Hall

(2003)
74. Schelfthout, K., Holvoet, T.: An Environment for Coordination of Situated Multi-

Agent Systems. First International Workshop on Environments for Multiagent Sys-
tems, New York (2004)

75. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load bal-
ancing in telecommunication networks. Adaptive Behavior, Vol. 5 (1997)

76. SOMA: http://www-lia.deis.unibo.it/Research/SOMA/
77. Sun Microsystems, Inc.: The JavaSpaces v1.2.1 Specification (2002)
78. Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic Service Matchmaking Among

agents in Open Environments. ACM SIGMOD Record 28(1) (1999)
79. Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The Retsina MAS Infras-

tructure, Kluwer Academic Publishers (2001)
80. TAEMS: http://dis.cs.umass.edu/research/taems/

Environments for Multiagent Systems 47

81. Telecom Italia: http://www.telecomitalialab.com/
82. Tummolini, L., Castelfranchi, C., Omicini, A., Ricci, A., Viroli, M.: “Exhibition-

ists” and “Voyeurs” do it better: a Shared Environment for Flexible Coordination
with Tacit Messages. First International Workshop on Environments for Multia-
gent Systems, New York (2004)

83. Voyager: http://www.recursionsw.com/voyager.htm
84. Weinstein, P., Parunak, H.V.D., Chiusano, P., Brueckner, S.: Agents

Swarming in Semantic Spaces to Corroborate Hypotheses. Joint Confer-
ence on Autonomous Agents and Multiagent Systems, New York (2004)
http://www.altarum.net/ vparunak/AAMAS04AntCAFE.pdf

85. Weyns, D., Holvoet, T.: Regional Synchronization for Situated Multi-agent Sys-
tems. 3rd International/Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2003, Prague, Czech Republic, Lecture Notes on Computer Sci-
ence, Vol. 2691. Springer-Verlag, Berlin Heidelberg New York (2003)

86. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae,
63(2) (2004)

87. Weyns, D., Holvoet, T.: Look, Talk, Do: A Synchronization Scheme for Situated
Multi-Agent Systems. UK Workshop on Multi-agent Systems, Liverpool (2002)

88. Weyns, D., Holvoet, Y.: A Colored Petri Net for Regional Synchronization in Sit-
uated Multiagent Systems. First International Workshop on Petri Nets and Coor-
dination, PNC’04, Bologna, Italy (2004)

89. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated
Multi-agent Systems. Journal on Applied Artificial Intelligence 18(9-10) (2004)

90. Whitestein: http://www.whitestein.com/pages/index.html
91. Wolfram, S.: Theory and Applications of Cellular Automata. World Press (1986)
92. Wolfram, S.: A New Kind of Science. Wolfram Media, ISBN 1-57955-008-8 (2002)
93. Wooldridge, M.: An Introduction to MultiAgent Systems. ISBN 0-471-49691-X.

John Wiley and Sons, Ltd. England (2002)
94. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The

Gaia Methodology. Transactions on Software Engineering and Methodology, 3(12),
ACM Press (2003)

95. Zambonelli, F., Parunak, H.V.D.: From design to intention: signs of a revolution.
First International Joint Conference on Autonomous agents and Multiagent Sys-
tems, Bologna, Italy, ACM Press (2002)

AGRE: Integrating Environments
with Organizations

J. Ferber, F. Michel, and J. Baez

LIRMM, CNRS 161 rue Ada
34392 Montpellier Cedex 5, France

{ferber, fmichel, baez}@lirmm.fr

Abstract. This paper presents an extension of the AGR (Agent-Group-
Role) organizational model, called AGRE (AGR + Environment), which
includes physical (or simply geometrical) environments. This extension
is based on the concept of a space which can be seen either as a physical
area or as a social group, and on a clear distinction between an agent
and its mode, i.e. the way it appears and interacts into a space with
other agents. A notation which encompasses both social and physical
environments is given.

1 Introduction

Recently a particular interest has been given to the use of organizational concepts
within multiagent systems (MAS) where the concepts of ’organizations, ’groups,
’communities, ’roles’, ’functions’, etc. play an important role [1, 2, 3, 4, 5, 6].

The use of organizations provides a new way for describing the structures
and the interactions that take place in MASs. The organizational level, the way
organizations are described is responsible for the description of the structural
and dynamical aspects of organizations. It stands for an abstract representation
of concrete organizations, i.e. as a specification of the structural and dynamical
aspects of a MAS. The organizational level describes the expected relationships
and patterns of activity which should occur at the agent level and therefore it
defines the constraints and potentialities that constitute the horizon in which
agents behave.

1.1 Organization Centered General Principles

The principles for designing true organizational centered multiagent systems as
explained in [7] are the following:

Principle 1: The organizational level describes the “what” and not the “how”.
The organizational level imposes a structure into the pattern of agents activities,
but does not describe how agents behave. In other terms, the organizational level
does not contain any “code” which could be executed by agents, but provides
specifications, using some kind of norms or laws, of the limits and expectations
that are placed on the agents behavior.

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 48–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

AGRE: Integrating Environments with Organizations 49

Principle 2: No agent description and therefore no mental issues are provided
at the organizational level. The organizational level should not say anything
about the way agents would interpret this level. Thus, reactive agents as well
as intentional agents may act in an organization. In other words, ant colonies
are as much organizations as human corporations. Moreover, seen from a certain
distance, or using an intentional stance it is impossible to say if the ants or the
humans are intentional or reactive. Thus, the organizational level should get rid
of any mental issues such as beliefs, desires, intentions, goals, etc. and provide
only descriptions of expected behaviors.

Principle 3: An organization provides a way for partitioning a system, each
partition (or group) constitutes a context of interaction for agents. Thus, a group
is an organizational unit in which all members are able to interact freely. Agents
belonging to a group may talk to one another, using the same language. More-
over, groups establish boundaries. Whereas the structure of a group A may be
known by all agents belonging to A, it is hidden to all agents that do not be-
long to A. Thus, groups are opaque to each other and do not assume a general
standardization of agent interaction and architecture.

These principles are not without consequences:

1. An organization may be seen as a kind of dynamic framework where agents
are components. Entering a group/playing a role may be seen as a plug-in
process where a component is integrated into a framework.

2. Designing systems at the organizational level may leave implementation is-
sues, such as the choice of building the right agent to play a specific role,
left opened.

3. It is possible to realize true “Open Systems” [8] where agents architecture is
left unspecified.

4. It is possible to integrate multiple aspects of a system and make them in-
teract together, considering each group as a “black boxes” which represents
a specific perspective of a system: what happens in a group cannot be seen
from agents that do not belong to that group.

However, the general concept of environment which is one of the main con-
cepts of a MAS [9] is not taken into account with these principles. If we con-
sider an environment as the conditions under which an entity exists [10], these
principles provide only support for social environments [11, 7]. They do not say
anything about physical (or even simply geometrical) environments, and entities
which are not agents (e.g. documents, objects to be grasped, etc.) are not con-
sidered. Several attempts have been made to integrate environments with AGR
(Agent-Group-Role). In [11] a model has been proposed. But this model has not
really been analyzed in detail and nothing has been said about the way to prac-
tically integrate environments with groups. Thus, it is still necessary to extend
the AGR model to take physical environments into account, without losing the
expressiveness and simplicity of this model.

50 J. Ferber, F. Michel, and J. Baez

1.2 Content of the Paper

Section 2 will summarize the main concepts of AGR and of the UML meta-model
one can use to implement AGR in various platforms. Section 3 will present the
AGRE (Agent-Group-Role-Environment) model which is an extension of the
AGR model and which allows for the design of social and physical environments
in an integrated way. We will see that both groups and areas (parts of the physical
environments) may be considered as specializations of more general spaces in
which agents are embedded through what we call ’modes’. This presentation
will include the basic concepts and the notation one can use to describe both
social and physical environments. Section 4 will draw conclusions and present
some perspectives.

2 AGR: A Basic Model of Organization Centered MAS

In order to show how these principles may be actualized in a computational
model, we have presented the Agent-Group-Role model, or AGR for short, also
known as the Aalaadin model [4] for historical reasons, which complies with the
organization centered general principles that we have proposed in the previous
section. The AGR model is based on three primitive concepts: Agent, Group and
Role that are structurally connected and cannot be defined by other primitives.
They satisfy a set of axioms that unite these concepts.

– Agent: an agent is an active, communicating entity playing roles within
groups. An agent may hold multiple roles, and may be a member of several
groups. An important characteristic of the AGR model, in accordance with
the principle 2 above, is that the architecture of an agent is left unspecified,
and that no cognitive abilities are assumed. Thus, an agent may be as reactive
as an ant, or as clever as a human.

– Group: a group is a set of agents sharing some common characteristic. A
group is used as a context for a pattern of activities, and is used for partition-
ing organizations. Following principle 3, two agents may communicate if and
only if they belong to the same group, but an agent may belong to several
groups. This feature will allow the definition of organizational structures.

– Role: the role is the abstract representation of a functional position of an
agent in a group. An agent must play a role in a group, but an agent may
play several roles. Roles are local to groups, and a role must be requested
by an agent. A role may be played by several agents.

The AGR meta-model is represented in Fig. 1 in UML.
A group type (or group structure), defined at the organizational level,

describes a particular type of group, how a group is constituted, what are its
roles, its communication language, and the possible norms that apply to this
type of group. A group is thus a kind of instance of a group type. A role type is
part of the description of a group structure and describes the expected behavior
of an agent playing that role. Role types may be described as in Gaia [12] by
attributes such as its cardinality (how many agents may play that role). It is also

AGRE: Integrating Environments with Organizations 51

AgentRole

RoleType

Group

GroupStructure

1 *

1 * * *

< plays

< member of1 *

Fig. 1. The UML meta-model of AGR

possible to describe interaction protocols and structural constraints between roles
(not viewed in the figure, but presented in [7]). A structural constraint describes
a relationship between roles that are defined at the organizational level and are
imposed to all agents.

A role, which is part of a group, is an instance of a role type defined for
an agent. We can see the role as a representative of an agent or as a kind of
social body that an agent plays when it is a member of a group, the interface by
which an agent is able to communicate and more generally to perform actions
in a group.

Several notations may be used to represent organizations. In [7] we have
proposed a set of diagrams to represent both static and dynamic aspects of
organizations.

3 AGRE: Integrating Environments to AGR

First, we will give a general overview of AGRE, and then we will present the
principles on which this model is based.

3.1 Description of AGRE

In this section we provide an extension of the AGR model to take into ac-
count both physical and social environments. This extension, called AGRE, for
Agent-Group-Role-Environment, is based on the idea that agents are situated
in domains, that we call spaces. A space may be physical (i.e. geometrical) or
social. Geometrical spaces will be called areas, and social spaces represent AGR
groups. There may be other kinds of spaces but we will not discuss them here.

Agents are situated in spaces and are able to perform actions in these spaces
through modes. A mode should be seen as the manifestation of an agent in
a specific domain, as its way of existence and appearance in a space. A mode
describes the agent’s location and the way it perceives and acts within a space.
A mode in an area is called a body, and a mode in a group is called a role.

52 J. Ferber, F. Michel, and J. Baez

Space

Area

Agent

RoleGroup

1

-roles

*

-area

*

-agent

*

Mode

Body -body

0..1

-agent 1

1

-bodies

*

1

-modes

*

-role

*

-agent 1

World

1

-spaces

*

Organization

PhysicalWorld

1

-spaces

*

1

-spaces

*

-world 1..* -agents*

Fig. 2. The UML meta-model of AGRE at the concrete level

Spaces are regrouped in worlds. A world is simply a collection of spaces
of the same kind. For the moment we will only consider two type of worlds:
organizations which represents social environments and are composed by sets
of groups, and physical worlds which represent physical environments and are
made of areas. It could be possible to consider other worlds: worlds for displaying
agents in a specific manner, worlds made of places for describing agent mobility,
etc. In this paper we will consider only two types of worlds: physical worlds made
of areas, and organizations made of groups.

Figure 2 shows the simplified UML diagram which represents the relations
between world, spaces, areas, groups, modes, bodies and roles at the concrete
level. For each concept at the concrete level (e.g. group, area, role, body) there
is a related abstract concept at the organizational level (e.g. group structure,
area structure, role description, mode description), except for the concept of
agent which does not have any corresponding concept at the organizational
level.

The aggregation relation that links space to mode, are overridden by the
same relation that links area to body and group to role. In the same idea, the
aggregation which relate world to space is overridden by an aggregation which
link organization to group on one hand, and physical world and area on the
other hand.

A world proposes the required primitives that are necessary for an agent to
enter a space and get its mode. Because the mode is the only way through which
an agent can act in a space, it is necessary for an agent to have the ability
to enter a space. This is done through the world which gives the necessary
primitives that an agent needs for entering a space and acquire a mode. An
agent may live in several worlds at once. Worlds are used as starting points for
agents to enter groups and areas. When an agent is created, it must register to
a world. For instance, a social agent, i.e. an agent that plays roles in groups, has

AGRE: Integrating Environments with Organizations 53

to register first to an organization. Let us suppose that the agent is registered
to an organization o, then, to enter a group, the agent may use the primitive1:

Role r = o.requestRole(GroupName, RoleType, RoleName, a);

which gives it the ability to request the entrance to a group for playing the role
of the type RoleType with the authorization a. If this is possible, the agent will
get a role through which it will have the possibility to act within this group.
All the skills associated to this role will be available to it, and naturally it will
be able to send messages to agents within this group, using a primitive of the
following kind:

r.sendMessage(RoleName,Message);

which expresses a request for the role to send a message to the agents having the
role RoleName. One can see that agents are only referenced by their RoleName in
a group. There is no way to send messages to the “real” agent, because formerly
there are no agents in a group: only roles by which agents are connected to
groups. To get an idea of the concepts involved, a role instantiated in a group
is like a registered login name in an internet e-commerce site. An agent may
act only through its login name which constitutes its mode. Of course there are
primitives by which an agent may acquire information about the different agents
related to a specific RoleType such as the following:

List<RoleName> l = r.getAgentsWithRoleType(RoleType);

which will return a list of all the local RoleName (i.e. all the logins) of all the
agents that play a specific RoleType in the group where the agent has the role r.

The same idea applies to physical worlds and areas. To enter an area, an
agent must register to a physical world p which contains this area and use a
primitive such as

Body b = p.requestBody(AreaName, BodyType, Location, a);

which gives it the ability to enter an area using a specific BodyType at the
location Location, with the authorization a. A reference to a body is returned.
Then, according to the capabilities of the body, the agent may move, grasp
things, etc. with commands like the following:

b.move(30,10);

Figure 3 shows the graphical notation used to represent items in the AGRE
model, which is an extension of the “cheeseboard” notation proposed in [7].

The following figure shows a snapshot of two agents playing roles in groups
and having bodies in areas. One can see that agent A1 plays two different roles
in G2 and one role in G1, while agent A2 plays only one role in G1. Both agents
have a body in area A1. These bodies are instances of the body type B.

1 We use a Java-like notation to give an idea of how such a model may be practically
realized. But obviously, this could be expressed in any language.

54 J. Ferber, F. Michel, and J. Baez

Fig. 3. Notation used to represent an instance diagram of agents, areas and groups

Fig. 4. A simple example with two agents playing roles in groups and having bodies
in areas

3.2 Principles of AGRE

In this section, we will summarize the principles applying to the AGRE model
that we have introduced in previous sections.

Principle 1: a multiagent world is constituted of agents (individuals) that may
perceive and act in spaces and manifest their existence through their mode. This
statement, when it is reduced to social world may be expressed as the following:

Principle 1a: An organization is a kind of world in which spaces are
groups and in which agents perceive and act through their roles.

Principle 1b: A physical world is a kind of world in which spaces are
areas and in which agents perceive and act through their bodies.

Principle 2: an agent may belong simultaneously to a social world and to a
physical world. The number of roles an agent may play is not restricted, but
the number of bodies an agent may possess is constrained by obvious conditions
that an agent can act in a world through only one body.

AGRE: Integrating Environments with Organizations 55

Principle 3: An agent may possess several modes of different kinds. The con-
straints about the number of modes an agent possesses depend of the world in
which it has been registered.

Principle 3a: an agent may have several roles in a group and may
belong to several groups.

Principle 3b: an agent may possess only one body for a given world.
This principle expresses the fact that an agent may not live in two dif-
ferent places at the same time. However, this constraint may be relaxed,
when two areas overlap.

Let us note by s: m.op(a1,..,an) the action of an agent with mode m
executing the operator op with args a1,..,an in space s. Let us also note the
following assertion:

– mode(x, m, s)[role(x,r,g)] : the agent x has a mode m in space s [has a
role r in group g]

– type(m, M) [type(r, R)] : the mode m is of type M [the role r is of type R]
– op(o(a1,..,an), M) : the operator o(a1,..,an) is defined in mode[role]

type M

Principle 4: The mode is the way for an agent to act in a space. An agent may
act in a space if one of its mode in the space gives it the power to do so. Thus,
an agent a may perform an action u in a space s, if there exist a mode m of a in
s such that the type of m (its ModeType) allows for u.

s : m.o(a1, .., an) ⇒ ∃x : Agent, mode(x, m, s) ∧ type(m, M) ∧ op(o(a1, .., an), M)

Principle 4a: an agent may communicate only if it plays a role in
a group. This communication is performed through its role, and the
receiver is necessarily another role within the same group.

s : r1.send(r2, msg) ⇒ ∃x, y : Agent, role(x, r1, g) ∧ role(y, r2, g)

4 Conclusion

We have proposed a simple model, AGRE, which is an extension of AGR and
which integrates smoothly physical and social environments. This extension re-
spects the main principles of organizational centered multiagent systems. Both
groups and areas may be seen as specializations of spaces in which agents may
act through modes. Because roles and bodies are modes, it is possible to consider
social and physical embedding as a general manner for an agent to manifest it-
self in a world. We have proposed some notations for this model and a set of
principles which describe the basic elements for understanding AGRE.

These concepts may be used for practical implementations. The MadKit plat-
form [13] that we have designed is built around the AGR model. Since its first
release, hundreds of users (thousands of downloads) have been able to use these

56 J. Ferber, F. Michel, and J. Baez

organizational concepts (presented in a less rigorous way than here) to build ap-
plications in various areas. We plan to extend the MadKit platform to integrate
this new AGRE model.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277–296

2. Zambonelli, F., Van Dyke Parunak, H.: From design to intention: signs of a revo-
lution. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, ACM Press (2002) 455–456

3. Demazeau, Y., Costa, A.R.: Populations and organizations in open multi-agent
systems. In: 1st National Symposium on Parallel and Distributed AI (PDAI96).
(1996)

4. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Proceedings of the 3rd International Conference
on Multi Agent Systems, IEEE Computer Society (1998) 128–135

5. Odell, J., Parunak, H.V.D., Breuckner, S., Fleischer, M.: Temporal aspects of
dynamic role assignment. In Giorgini, P., Muller, J.P., Odell, J., eds.: Agent-
Oriented Software Engineering IV: 4th International Workshop, Aose 2003. Lecture
notes in computer science LNCS, Melbourne, Australia, Springer Verlag (2003) 47–
59

6. Gasser, L.: Perspectives on organizations in multi-agent systems. In Luck, M.,
Mak, V., tpnkov, O., Trappl, R., eds.: Multi-Agent Systems and Applications :
9th ECCAI Advanced Course ACAI 2001 and Agent Link’s 3rd European Agent
Systems Summer School, EASSS 2001. Volume 2086 of LNAI., Prague, Czech Re-
public, Springer-Verlag Heidelberg (2001) 1–16

7. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In Giorgini, P., Muller, J.P., Odell, J., eds.:
Agent-Oriented Software Engineering IV: 4th International Workshop, Aose 2003.
Lecture notes in computer science LNCS, Melbourne, Australia, Springer Verlag
(2003) 185–202

8. Hewitt, C.: Offices are open systems. ACM Trans. Inf. Syst. 4 (1986) 271–287
9. Weyns, D., Parunak, H.V.D., Michel, F., eds.: The First International Workshop on

Environments for Multiagent Systems E4MAS. In Weyns, D., Parunak, H.V.D.,
Michel, F., eds.: Environments for Mutiagent Systems. Volume 3477 of LNAI.,
Springer (this volume, 2005)

10. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments
for multiagent systems: State-of-the-art and research challenges. In Weyns, D.,
Parunak, H.V.D., Michel, F., eds.: Environments for Mutiagent Systems. Volume
3477 of LNAI., Springer (this volume, 2005)

11. Parunak, H.V.D., Odell, J.: Representing social structures in uml. In: Agent-
Oriented Software Engineering II. Volume 2222 of Lecture notes in computer sci-
ence LNCS., Berlin, Springer (2002) 1–16

12. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12 (2003) 317–370

13. Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems. In: Proceedings of the fifth international conference
on Autonomous agents, AA 2001, ACM Press (2001) 441–448

From Reality to Mind: A Cognitive Middle Layer
of Environment Concepts for Believable Agents

Paul Hsueh-Min Chang1, Kuang-Tai Chen1, Yu-Hung Chien1,
Edward Kao2, and Von-Wun Soo1,2

1 Department of Computer Science
2 Institute of Information Systems and Applications

National Tsing-Hua University,
101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan

{pchang, fuchs, sot, edkao, soo}@cs.nthu.edu.tw

Abstract. The environment is an important but overlooked piece in
the construction of multiagent-based scenarios. Richness, believability
and variety of scenarios are inseparable from the environment because
every action and interaction of agents is based around the environment
they are situated in. The prerequisite, however, is that agents must be
able to understand the environment and capture its dynamic nature.
This paper proposes a cognitive middle layer between agent minds and
the environment. Aspects of the reality are mapped to concepts in the
middle layer, through which agents can feel and reason about the real
environment. The middle layer is modelled with a structured specification
based on Web Ontology Language (OWL) to be extensible and reusable.
Environmental concepts are integrated into the goal processing of agents
to trigger intentions. This paper also reports our initial investigation
about the design of a simulation system for multiple environment-aware
agents and multiple users.

1 Introduction

Computational models of story scenarios are gaining importance lately [14] [11]
[6]. With intelligent agent technologies, characters of the scenarios can be made
autonomous and express human-like behaviors [9]. Therefore, instead of a static
story shown in movies or novels, a flexible scenario construction can be obtained,
where agents behave intelligently and respond to the behaviors of the user in-
telligently. Such scenarios are useful for many purposes, including digital enter-
tainment [18], simulation-based training [16], and education [6] [7]. Although
the multiagent paradigm helps developing agents that exhibit believable behav-
ior through interaction, the importance of environment is often overlooked. To
evaluate agent designs incorporated with complex cognitive or social character-
istics, a rich dynamic environment is needed [8]. The environment is therefore
an important part of a convincing scenario not only because agents can interact
with the environment and other agents, but also because the environment pro-
vides foundations for richer agent interactions. In other words, agent interactions

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 57–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 P.H.-M. Chang et al.

are not confined to exchange of messages; the agents interact through many al-
ternative media provided by the environment. The changes an agent makes to
the environment can either convey a message to or directly affect other agents.
We propose the idea of believable environments, which agents can interact with.
The believability of an environment depends on how well it can express agent
behaviors in a human-like and realistic way. The challenge is that agents must
be able to understand and reason about the environment in order to exploit
it. Also, the agents must be able to sense the changes in the environment and
affect it with actions. However, it is difficult for agents to understand the envi-
ronment as a continuous entity or numerical values. Psychological studies show
that human beings form discrete concepts (also known as schemata) from the
environment and use them to think. Cantor and Kihlstorm [1] argue that the
schemata in the human brain has a complex hierarchical structure, while Trafi-
mow and Wyer [15] describes schemata as abstract concepts and some concrete
instances of them. There are two major advantages of modelling agent cognition
in a similar way. First of all, agents that think on concepts are understandable
to human beings because humans can comprehend the feelings of and decisions
made by the agents. Second, the connection among concepts enables agents to
infer state transitions of the environment without going into complex numerical
calculation.

However, contrary to human beings, we believe that agents’ concept model
of the world should be constructed as a part of the environment instead of inside
the mind of agents. Here we propose a three-layer architecture. The bottom layer
is the physical environment that works according to physical laws. The middle
layer is the concept model, in which concepts are identified and connected. The
concept model is merged into the environment and shared among all agents in
the scenario because doing so avoids redundancy of concepts and gives all agents
a common conceptual basis so that they can reason about the actions among one
another. The topmost layer is the subjective mind, which resides in an agent.
Physical environments map to concepts, which in turn trigger the sentiments
and intents of agents. With this architecture, the agents have a high-level rep-
resentation of the environment which is integrated in the scenario seamlessly.

The rest of this paper is organized as follows. Section 2 describes the back-
ground and reviews related work. Section 3 introduces the three-layered cognitive
architecture and explains how an agent maps the reality to concepts and con-
cepts to its mind. Section 4 discusses the design of such a simulation system.
Section 5 concludes this paper.

2 Background and Motivation

Research efforts that can be ascribed as construction of believable scenarios
consist of diverse application domains including simulation-based training, sto-
rytelling and entertainment, as mentioned in section 1. Nevertheless, an explicit
model of environment is missing in most of the research efforts related to believ-
able scenarios. Riedl’s Mimesis system [13] for scenario control in an interactive

From Reality to Mind: A Cognitive Middle Layer 59

drama is built on top of the Unreal Tournament engine, a commercial 3D gaming
environment. Although the environment of Mimesis provides a background for
narrative stories, it is more like a drama stage for actor agents who have already
decided what to do than a realistic environment that agents can dynamically
interact with. The simulation system of Norling and Sonenberg [8] [9] is built on
a similar gaming environment, Quake 2. Instead of creating agent-based dramas,
Norling and Sonenberg focus on creating agents that mimic human game-playing
behaviors. There is no explicit notion of environment modeling, and therefore
believability of their agents is specific to the game environmment allowing only
a small set of combat actions such as running and shooting.

The background environment has an important role in Mission Rehearsal Ex-
ercise project [16], which simulates a traffic accident in a peacekeeping scenario.
In this scenario, a human trainee plays a lieutenant and collaborates with intel-
ligent virtual humans enacting the roles of his sergeant and other characters by
negotiating plans and tasks. The environment is represented to human trainees
with 3D graphical virtual environment and immersive audio. Despite the fact
that the environmental factors such as weather and physical surroundings can
actually change the situation that the trainee must face, there is no explicit de-
scription about how the environment is presented to agents, and it is hard to
see how the virtual humans will adjust their behaviors when the environment
is changed by a designer. In summary, we observed a tendency toward view-
ing a believable scenario as a set of virtual characters that exhibit believable
behaviors through interacting among themselves or with a human participant;
little emphasis is put on the interaction between characters and the environment.
Thus, the agents either are able to act in a specific environmental context only,
or ignore the environment entirely. We believe that the absence of a model of
environment not only leaves a major source of believability unexploited, but also
limits the applicability of existing approaches. Although work on environments
for multi-agent simulation [5] [21] exists, their focus is on providing a framework
for agent development and testing instead of constructing a dynamic and inter-
active environment.

A notable exception is Doyle [3], who proposed the idea of annotated envi-
ronment that facilitates building believable agents which guide the user through
virtual worlds such as virtual galleries and computer games. The environment is
described with annotations on objects, events and contextual information. The
annotations inform agents of what operations can be invoked, what emotions
should be triggered, and so on. As a result, an agent does not need to carry
a lot of environmental information before visiting a different place because the
information has already been annotated in the environment. Doyle’s work en-
ables agents to be situated in the environment, however, his approach still has
two limitations. First, the annotations dictate the functions of objects in the
environment and do not provide enough clues for agents to act intelligently and
creatively. In Doyle’s own example, a spray can of plant killer is annotated with
a single purpose which is to kill the plant guardian. This annotation tells agents
what can be done with the object, but also makes it impossible for agents to

60 P.H.-M. Chang et al.

infer that the plant killer can also slay other plant monsters, tremove weeds, or
simply be thrown at others. Second, static annotations have the risk of wash-
ing out behavoral differences among agents. Behavioral differences are expected
when different agents enter the same place, or when the same agent stays at or
revisits a place that has changed. For example, a room annotated as a romantic
place will stop being romantic when too many agents enter it, and agents inside
this room will change their moods and behaviors according to their tolerance
to noise. The need to create behavioral differences will increase as the scenario
becomes larger, longer or more dynamic in nature. We argue that such desirable
behaviors can only be modeled with a systematic method to update agents’ be-
liefs about the environment; mere static annotations are unstructure and hence
do not suffice. Instead of instructing the agents what they can and what they
should feel, we think the environment should provide hints to agents about its
effects on them, allowing creative use of the environment and exhibition of dif-
ferent personalities.

Our cognitive architecture defines ontologies as the abstraction of the world,
and maps aspects of the environment to concepts in the ontologies. In this as-
pect, our approach is comparable to Dickinson and Wooldridge’s Nuin agent
architecture [2] in which BDI agents [12] use the Semantic Web as their knowl-
edge sources. However, our architecture differs from Nuin as our concept model
has built-in reasoning capability about the direct causal relations between ac-
tions/events and environmental effects. The most significant advantage of our
approach is that agents can be designed to know only a subset of concepts while
the whole ontology is stored in the environment. Agents can query the concept
model about what can be done with an object or what must be done to bring
about an effect. The relation between BDI agents and our cognitive architecture
is a topic for future investigation. Although this paper does not aim to provide
a comprehensive model of multi-agent systems, it can be related to the formal
notion of situated multi-agent systems, whose reference can be found in [17] [4].

3 Cognitive Architecture

Figure 1 illustrates the cognitive architecture with a simple example. The archi-
tecture consists of three layers. They are, in bottom-up order, reality, concept
model and agent mind. We describe each of them in the following subsections.

3.1 Reality Model

This reality layer represents the objective physical environment whose existence
does not depend on the agents’ minds. To create a realistic scenario, the en-
vironment should be modelled in a way similar to how the real world works.
Simplifications are necessary since producing a virtual world that functions ex-
actly the same as the real world is notably difficult. Fortunately, in many cases
believable scenarios do not require absolute resemblance to real environments;
the virtual environments just need to be recognized as realistic. Thus, designers

From Reality to Mind: A Cognitive Middle Layer 61

Fig. 1. The cognitive architecture of environmental understanding

of the reality layer can develop their approximations of the environment to suit
their target applications.

The reality layer contains two different models, each of which addresses an as-
pect of the environment. In the first perspective, the environment can be viewed
as a set of physical properties, such as the temperature of a point in the loca-
tion, the hardness of a sword, and the burning point of a wooden chair. Physical
properties can change with time according to some physical laws. For example,
heat diffuses from places with high temperature to those with low temperature.
Physical laws also tell that when the temperature of an object is higher than its
burning point, it burns and produces more heat. With simple physical laws, a
large set of possible phenomena and consequences can be derived.

However, artificial objects are often complex, and their functions cannot be
explained by simple physical laws. For example, the seemingly simple relation
between keys and locks has delicate craft behind it. Thus, the second perspective
that views environment objects as artifacts (man-made items) is necessary. An
artifact directly maps to specific concepts in the concept model as its usage
functions (to be described in the next subsection); the functions of an artifact
do not need to be explained with physical properties. Nevertheless, an artifact is
still a physical object and possesses physical properties. The key in the example
above is an artifact because it opens doors, but it still is made of metal and has
a melting point. The general principle is that the more delicate and complex an
item is, the more likely it is modelled as an artifact.

62 P.H.-M. Chang et al.

3.2 Concept Model

The concept model is the middle layer that allows minds to understand the re-
ality. It is external to any agents and should be supplied by the builders of the
environment. Otherwise, each agent will have to store a complete conceptual-
ization of the world. An external concept model not only reduces redundancy
but can also be extended without modifying all agents. Besides, agents will act
believably and consistently if they use identical external concept model provided
by environment. The concept model is primarily a set of interconnected concepts,
which can be realized as ontologies and rules.

Concepts and Reality. Although every object has its physical properties that
can be represented numerically, people do not always understand it by these
numerical values. Take temperature as an example again. If the temperature
is lower than a ”normal standard” that the agent holds, it is ascribed as cold.
Similarly, if the temperature is higher than a normal one, it is hot. If something
has a very high temperature and starts emitting light, it is called a fire. Hot,
cold and fire are concepts inferred from the environment. The reality must be
transformed to a set of concepts before the agent can think about and use it.
More concretely, an agent maps an aspect of the environment to an instance of
concepts in the concept model. For physical objects, the correspondence between
reality and concepts is obtained through a set of mapping functions. Artifacts,
on the contrary, are directly assigned as instances of concepts during design time.
Note that although the qualitative concepts of hot and cold are in most cases
shared among human beings, each agent can have its own standard about the
normal temperature. Thus, the mapping functions should sometimes take the
personal traits of the agent as a parameter that affects the outcome. The system
design described in section 4 reflects this.

It is also important to note that although artifacts always match a concept
perfectly, the matching between a physical object and a concept is usually im-
perfect. In the case of artifacts, people have concepts first and then build the
instances later. For example, people invented locks and keys because they only
want to allow those who are authorized to access certain properties. Conversely,
physical objects exist before any conceptual abstractions emerge, and therefore
the categorization is usually ambiguous. Thus, the mapping functions return a
similarity value that indicates the accuracy of classification. With the mapping
function, the similarity value of an object to a concept can be computed. For ex-
ample, a crossbow is an artifact, and therefore its similarity value to the concept
”weapon” is always 1. A decoration sword, even if not designed as a weapon in
its usage functions, can still be inferred as a weapon because its physical proper-
ties (sharpness, hardness and weight) can easily be exploited to harm people. A
glass bottle, although not as effective as a sword, also possesses harmful proper-
ties (being hard and somewhat heavy). Whether the agents will consider a glass
bottle a weapon is not so obvious because its similarity value to the weaponry
concept is lower than that of a sword. In principle, agents will take into consid-
eration the concepts that are better matched by an object. Thus, in a bar fight
agents will look for instances that map to the concept of weapon with a high

From Reality to Mind: A Cognitive Middle Layer 63

similarity value, such as a sword. They will consider utilizing things like a glass
bottle only when a good match cannot be found.
Concept and Perception. The difference between traditional perception-based
approaches and the concept-matching approach deserves elaboration. The ex-
amples mentioned above can be used to explain the difference between the two
approaches. Although fire is very hot, an agent cannot sense fire by temperature.
Instead, the agent tells that something is on fire by the shape and the color of
light, from which the agent can decide the temperature of the fire (although
inaccurately) with experience. Similarly, agents have no way to tell the weight
and hardness of a glass bottle without grasping it. In summary, there are some
aspects of the world that cannot be easily perceived; knowledge and expertise
are needed to decide them. To reduce the complexity, the mapping functions
between reality and concepts are designed to imply common-sense knowledge.
Thus the concept model subsumes perception. Whether this approach can be
an adequate basis for model human-like perception capabilities is an issue for
future investigation.

Concept Structure. Although concepts represent the environment in a way
that is meaningful for the agents, they alone do not enable agents to reason
about the environment. The important fact that concepts are interconnected is
what makes reasoning possible. The connection among concepts is divided into
two types: ontologies and causal rules. Ontologies define both the hierarchy of
concepts (”fire is a subclass of light source”) and the type of relationship between
instances of concepts; the latter is defined through a linking word, also known
as a property. A property can be either a purely descriptive property or a causal
property ; the latter is used to define causal relations. For example, suppose the
concept Key has a causal property unlocks on the concept Lock, the ontology
can be used to define the causal relation that key k unlocks lock l. Causal rules,
on the contrary, describe the effect that all instances of a concept can cause on
all instances of another. ”Fire burns inflammable” is such a rule, for instance.
Causal properties and causal rules are nevertheless defined through the same
set of linking words. A linking word marks the type of the rule/relation and is
associated with an action and the effect triggered by the action. An effect can
be an addition or a removal of a state or a type of the target. For example,
the linking word unlock mentioned above is associated with the action Unlock
and the effect Unlocked. Suppose key k can be used to open lock l, the causal
relation between them can be represented as a triple (k, l, unlock), which has
the following semantics:

Unlock(k, l) → Unlocked(l) . (1)

Note that, although the set of possible relations is defined in the concept
model through linking words, actual relations between instances are a part of
the reality layer. As would be explained later, agents cannot perceive every actual
relation.

The general form of all rules is defined as a triple (C, C, L), where C is set
of all concepts and L is the set of all linking words. For any rule (Source, Target,

64 P.H.-M. Chang et al.

Link), Source, Target ∈ C, Link ∈ L, the semantics of the rule is defined as
follows:

∀s Source(s),∀t (Target(t) (ActionLink(s, t) → EffectLink(t)) . (2)

For example, the linking term burn in figure 1 is associated with the action
Touch and the effect Fire. Thus the rule ”fires burn combustibles” is defined as:

∀s F ire(s),∀t Combustible(t) (Touch(s, t) → Fire(t)) . (3)

Similarly, the rule ”igniters burn inflammables” is defined as:

∀s Igniter(s),∀t Inflammable(t) (Use(s, t) → Fire(t)) . (4)

The rule ”light source eliminates darkness” is defined as:

∀s LightSource(s),∀t Darkness(t) (Noop(s, t) → Destroyed(t)) . (5)

Note that in (5) the agent does not need to do anything to lighten the dark-
ness, and therefore the action is Noop. Actions are also hierarchical; the action
Hit implies Touch and therefore can be defined as a subclass of Touch. Combin-
ing ontologies and rules results in a wide range of causal reasoning. For example,
the agent can infer that an instance of fire (which is a subclass of light source)
can eliminate darkness.

As concepts are abstractions of physical properties and artifacts, rules are
abstractions of physical laws. Ideally, rule defines the causal effect between every
instance of two concepts, and therefore every instance of fire can burn every
instance of combustible. However, this is not always true since the instances
may not be a perfect match for the concept. Tissue papers and hard wood both
can be instances of combustible, but the former has a higher similarity value
than the latter and is more likely to catch fire. Thus, when reasoning about
rules an agent must take the similarity value into consideration. Agent will apply
rules that have a higher chance to succeed since they consider better matches of
concepts first. Note that, even if an agent applies a small fire on an combustible
and it does not burn, that agent still succeeds in behaving believably, because
human themselves can also lead to failures of the same kind.

Selective Information Exposure. Though the concept model provides cues
for agents to interact with artifacts and other existences in the reality layer,
not all concepts should be acknowledged by every agent. We briefly explain and
classify these conditions into two conditions as below.

Different Cultures. The social norms in different societies may not be the same,
and hence the usage of artifacts produced in one civilization may not be rec-
ognized properly by the outsiders. In this case, the agents can only speculate
the artifact usage from its physical features, and can only result in primitive
usage such as eat or throw. However, an outsider may gain the knowledge of ar-
tifacts from certain methods, such as personally observing others using them. To

From Reality to Mind: A Cognitive Middle Layer 65

define the relation between civilization and its artifacts, we take a bottom-up ap-
proach. Designers must design artifacts with their usages, and then assign these
artifacts to one existing civilization in the current scenario. In other words, a civ-
ilization is established by containing various artifacts and other social concepts,
or it would simply be an empty set. No artifact is created without associated
civilization.

Causal Relations. The agent does not see specific causal relations between an
artifact and another one, even the agent and artifacts come from the same society.
For example, an agent without previous knowledge cannot ensure whether key
k can open lock l by mere looking at them, though he identifies this artifact
correctly as a key. Such knowledge has to be gained through instruction manuals,
other agents, or simply trial and error. The knowledge is then stored in the
memory of the agents as their beliefs, and the agent will stop trying different
keys when he encounters this lock again.

3.3 Mind Model

The agent mind represents intelligent agent components, and the architecture
consisting of them. Once the agents are in position, they would be able to interact
with the believable environment, and therefore strengthen their own believabil-
ity. Here we explain how concept model informs agents with traditional agent
architecture design, and reserves the space for emotion cognition.

Instances of concepts are cues that trigger the activities of the minds of
agents. Compare to the concepts, which (relatively) objectively represent the
reality, mental activities are subjective because each agent can have different
interpretations about the concepts. Mental activities include two major types:
sentiments and intents. A concept can map to multiple sentiments, while multi-
ple sentiments can also map to one concept. For example, Figure 1 shows that
the presence of both darkness and silence in general trigger the emotion of fear.
The mapping between concepts and sentiments can be put inside the concept
model because certain commonness among human beings can be assumed. How-
ever, darkness and silence instill different degrees of fear into different agents,
and the weights of darkness and silence vary from agents to agents. Thus, the
personalities of agents must be taken into consideration when calculating the
triggering of sentiments. Moreover, some agents may fear a particular thing that
others do not necessarily fear, such as a rat, a gecko, or something more personal.
Such personal emotional triggers can be placed inside an agent to override the
default mapping in the concept model.

The triggering of intents involves two additional components of agent mind:
goals and knowledge. Agents first have goals, and then look for knowledge that
can be exploited to attain the goals. Knowledge is basically the connections
between concepts [10]; isolated concepts cannot help generating the intents since
agents rely on the causal effects of the environment to reach the goals. For the
purpose of this paper, a goal is defined as a desired effect on a particular target
instance. Omitting the target instance means the goal is to apply the desired

66 P.H.-M. Chang et al.

effect on an arbitrary individual. The following algorithm shows how causal rules
in the concept model can be used in the process of triggering new intents. Causal
relations that are remembered in the memory of the agent can also be used in a
way similar to this algorithm.

1 function triggerIntent (goal)
2 targetSet := intentSet := ruleSet := goalSet := {}
3 for all rules r , r.link.effect = goal.effect do
4 add r to ruleSet
5 if ruleSet = {} then return failed
6 if goal.targetInstance != null then
7 add goal.targetInstance to targetSet
8 else
9 for all t , t instanceOf goal.targetConcept do
10 add t to targetSet
11 if targetSet = {} then return failed
12 target := getOneWithMaxSimilarity (targetSet)
13 for all rules r , r belongTo ruleSet do
14 sourceSet := {}
15 for all s , s instanceOf r.sourceConcept do
16 add s to sourceSet
17 if sourceSet != {} then
18 source := getOneWithMaxSimilarity (sourceSet)
19 for all a belongTo r.link.actions do
20 add a new Intent (a, source, target) to intentSet
21 else
22 add a new Goal (r.sourceConcept, null)

to goalSet. The effect of the new goal is
r.sourceConcept , while target instance is null ,
which means the target is arbitrary.

23 if intentSet != {} then
24 intent := choose (intentSet)
25 add intent to the agent’s intent pool
26 return successful
27 else
28 add a new Goal OR(goalSet) to the agent’s

goal pool
29 add an ordering constraint that OR(goalSet)

must be executed before goal
30 return suspended

Take the intent illustrated in figure 1 for example. To overcome fear, the agent
generates a subgoal of dispelling darkness with internal planning. Suppose d
is an instance of darkness, the subgoal can be specified as Destroyed(d). Then
the intent of agent is triggered through triggerIntent algorithm. The process is
described as follows:

From Reality to Mind: A Cognitive Middle Layer 67

First Call of triggerIntent(Destroyed(d)):

1. The agent looks for causal rules in the concept model. Any rules or relations
whose effects satisfy the goal are retrieved. In this case, rule (5) defined in
subsection 3.2 is discovered.

2. The agent checks whether anything in the environment is an instance of the
source concept of the rule. In this case, the agent cannot find one because
there is no light source in the environment.

3. If no instance of the source concept is found, the agent adds a new goal
to create such an instance. In this case, the new goal can be specified as
LightSource(null).

4. The original goal is suspended since the new goal must be accomplished
before the original goal.

First Call of triggerIntent(LightSource(null)):

1. The agent executes triggerIntent with the new goal LightSource(null). It
looks for a rule whose effect creates an instance of either light source or a
subclass of light source such as a fire. In this case, rules (3) and (4) are
discovered.

2. Since the agent cannot find a fire to start another fire, rule (3) is filtered.
Thus the agent starts searching for an instance of Combustible which is the
target concept of (4). A torch o is found.

3. The agent also looks for an instance of igniter, which is the source instance
of (4). A matchbox m is found.

4. The agent retrieves the triggering actions of the rule/relation. If multiple
possible actions exist, the agent can choose one of them due to other con-
siderations such as the cost of the action, the side effects, etc. In this case
the action is use.

5. The agent successfully generates an intent to use the matchbox on the torch.

Second Call of triggerIntent(Destroyed(d)):

1. The agent revisits the goal Destroyed(d) again after the goal LightSource(null)
is accomplished. It manages to find a light source this time (the burning torch
o).

2. In this special case, the only action is to trigger rule (5) is Noop.
3. The agent generates a new intent to perform Noop on d with o.

The agent then tries to carry out the intent and find that it does not need to
do anything since the action is Noop. Thus the agent considers the goal attained
internally. The agent can ensure the accomplishment of the goal by observing
whether the instance of darkness really disappears.

4 System Design

This section discusses issues about the design and implementation of multi-
agent systems realizing the three-layer cognitive architecture described in above

68 P.H.-M. Chang et al.

sections. Our goal is to provide a concrete implementation of the concept middle
layer, enabling the agents to reason about the environment. We do not want
to develop a general model of the reality (i.e. the environment itself) because
each scenario can have a different model of the environment. Instead, an adapter
interface is provided to allow the concept layer to be ”plugged” onto different
environments. Hence, agents can perform concept-based reasoning by interacting
with the concept layer plugged onto different environments, including existing
ones, without knowing the implementation details of each environment.

Fig. 2. The overview of the multi-agent simulation system

4.1 Pluggable Architecture

Currently a primitive simulation system of the above scenario of dispelling dark-
ness is created to show how a scenario can be constructed with the pluggable
middle layer of environment concepts. Figure 2 illustrates the system architec-
ture. Agents in the system are built upon the JADE agent platform [19]. There
are four types of agents in the system: non-player-character (NPC) agents, user
interface (UI) agents, concept mapper agents and reality adapter agents. The
NPC agents are believable characters which realize the mind layer of the cog-
nitive architecture. Human participants can interact with both the NPC agents
and the concept mapper agent through UI agents. NPC agents and UI agents
are on equal stance in that they can perceive the same data and act in the same
way except that NPC agents are driven by artificial minds while UI agents are

From Reality to Mind: A Cognitive Middle Layer 69

controlled by human. The reality adapter agent is responsible for monitoring
the changes in the reality model and translates them into a form recognizable
by the concept mapper agent. For this scenario we created our own the reality
model that simulates temperatures, burning points and brightness of objects
with simple formulae, but specific reality adaptor agents can be built to connect
with existing environments such as computer games if the environment provide
an application interface for retrieving environment states. The concept mapper
agent manages the interaction between NPC/UI agents with the reality layer
and thus has a central role in the system. Unlike the other three types of agents,
which are specifically tailored for different scenarios or environments, the con-
cept mapper agent has a fixed implementation and can be introduced to systems
without modification.

Concept Mapper Agent. The concept mapper agent is in charge of both percep-
tion and action; it maps aspects of reality to instances of concepts and maps
action instances to events. The scenario of dispelling darkness is used again as
an example of how the concept mapper agent works with other agents. When
an NPC agent intends to light a torch, it sends the concept mapper agent an
action request to use a pack of flint and steel on the torch. The concept mapper
agent translates the action to an event the reality adapter agent recognizes. For
example, the action ”touch” is interpreted as an event that the source object
becomes adjacent to the target object for a short time. The reality adapter agent
receives the event, according to which the agent applies actual changes to the
environment. The environment changes according to the reality model, which
determines that the temperature of the torch becomes higher than its burn-
ing point, and the reality adapter agent monitors changes in temperature and
brightness. The reality adapter agent then reports these changes to the concept
mapper agent, which maps the changes to instances of concepts. Suppose each
NPC agent has the same standard about light. Then the concept mapper agent
maps the increase in brightness to a new instance of the concept ”light” and
report the instance to all NPC agents. Each NPC agent, however, has a different
standard about being hot, and thus the concept mapper agent must first retrieve
the traits of the NPC agents and then use them as input arguments of the map-
ping function of the concept ”hot”. The concept mapper agent calculates the
mapping function for each NPC agent and reports an instance of ”hot” to the
NPC agent if and only if the mapping function returns a positive result. The
instances are stored in the knowledge base of NPC agents and may invoke a new
intent or sentiment.

Realizing Concept Structures. The ontologies in the concept model are written
in OWL [23], which is expressive enough for the concept hierarchies and causal
properties. The Jena Semantic Web tool [20] is used to parse the OWL ontologies.
Jena contacts the RACER description logic reasoner [22] to perform ontological
inference. Figure 3 depicts a sample ontology for describing the relationship
between keys and locks. Causal rules and linking words are explicitly defined in
separate tables. Rule-based inference is achieved with a simple program since the
rules currently are in a simple fixed format. There is also an action ontology, also

70 P.H.-M. Chang et al.

Fig. 3. Sample ontology for representing the causal property of keys on locks

written in OWL, that defines the hierarchy of actions. For example, to hit is a
sub-action of to touch because hitting A with B implies that A touches B. NPC
agents obtain the concept structure through the concept mapper agent and use
inference to trigger intents and sentiments, and to decide what actions to invoke.

Utilizing a Semantic Web language such as OWL is a key to the extensibility
of our concept model. Reuse of ontologies can be easily attained by importing
existing OWL documents. The reuse can facilitate the creation of new worlds
and the integration of multiple existing worlds. In principle, the same NPC agent
can travel to and from different worlds created by different authors because the
knowledge needed for action and emotion is encoded in the environments. In
this aspect, we share the view of Doyle’s ”knowledge-in-the-world” approach [3],
which decouples agents and environments so that they both can be developed
independently.

4.2 Discussion on Scalability

This subsection discusses the scalability issues that can result from our system
design of the three-layered architecture. The design decision of separating the
concept model from agents has the advantage that agents do not need to carry
environmental concepts with them. The separation removes redundancy and
gives the agents a common basis of environmental understanding even when the
size of the concept model grows.

An obvious issue is that the performance may downgrade significantly when
the number of concepts and environmental aspects becomes high. For example,
suppose there are 1000 concepts in the concept model and 100 aspects of envi-
ronment in a room. At the first sight, the system will have to perform 200000
operations when two NPC agents enter the room if every aspect of environment
is matched against every concept for every agent. The number of operations can
cause the system to be overloaded.

However, we argue that not all operations are needed to be done at the same
time. Only the few basic concepts related to the crucial background information,
such as visual appearance, sound, or other defined concepts in the global settings
are to be mapped and sent to the agents in the first place. Other more advanced
concepts can be resolved in an incremental way as the time goes by. What kinds of

From Reality to Mind: A Cognitive Middle Layer 71

concepts needs to be resolved afterward, are determined by the cognition strategy
of agent mind, which is beyond the scope of this paper.

Moreover, the problem can be further alleviated with offline computation.
For a concept whose mapping functions does not take traits of NPC agents
as parameters, an inverted list can be computed that contains all objects that
are instances of the concept. The objects in the list are sorted in descending
order according to the similarity values. For example, the concept mapper agent
returns the elements in the inverted list of fire if requested with instances of fire.
For concepts whose mapping functions take the traits of NPC agents as inputs,
offline computation is still possible if the set of all possible values of the trait is
a finite enumeration.

5 Conclusion

Environment modeling is an essential part of building a believable multiagent
scenario not only because a realistic environment itself contributes to believabil-
ity, but also because the characters are more believable if they interact with the
environment in a convincing way. A three-layer cognitive architecture is proposed
as a unified model of agents and environments. The bottom of the architecture
is the reality layer that models the dynamic environment as either continuous
values or discrete items. The top layer is the agent mind that generates emo-
tions and makes plans. This paper focuses on the middle layer of concepts that
bridges the mind and the reality. The concepts, which represent the aspects of
the reality, are formulated as ontologies and rules through which agents can rea-
son about the environment. The concept layer also includes a set of mapping
functions that maps the reality to instances of concepts. A prototype system is
built to allow agent-based characters to create intentions from instances sensed
through the concept layer. The specification of the concept layer is based on
OWL, and therefore has the advantage of being extensible and reusable. Devel-
oping large-scale virtual environments is possible since different environments
designed by different authors can be connected by combining the concept mod-
els. We are planning to increase the scale of scenario of the prototype system and
developing criteria for evaluation and performance analysis. We are also plan-
ning to further formulate the causal rules and integrate them within a formal
BDI agent architecture. Another topic for future investigation is to incorporate
the believable agents themselves as a part of the environment and use the same
model for cognition about agents.

Acknowledgements

This research is supported in part by National Science Council of ROC under
grant number NSC 93-2213-E-007-061 and also by Ministry of Economic Affairs
of ROC under grant number 93-EC-17-A-05-S1-030. The authors appreciate the
reviewers’ comments and corrections.

72 P.H.-M. Chang et al.

References

1. Cantor, N., Kihlstorm, J. F.: Personality and Social Intelligence. Prentice Hall,
Englewood Cliffs, USA (1987)

2. Dickinson, I., Wooldridge, M.: Towards Practical Reasoning Agents for the Seman-
tic Web. Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003). Melborne, Australia (2003)

3. Doyle, P.: Believability through Context: Using ”Knowledge in the World” to Cre-
ate Intelligent Characters. Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2002). Bologna, Italy
(2002)

4. Ferber, J., Müller, J.P.: Influences and Reaction: a Model of Situated Multiagent
System. Proceedings of the 2nd International Conference on Multi-agent Systems.
Kyoto, Japan (1996)

5. Klein, J.: breve: a 3D Simulation Environment for the Simulation of Decentralized
Systems and Artificial Life. Proceedings of Artificial Life VIII, the 8th International
Conference on the Simulation and Synthesis of Living Systems. The MIT Press
(2002)

6. Ligorio, B., Mininni, G., Traum, D.R.: Interlocution scenarios for problem solving
in an educational mud environment. Proceedings of the First European Conference
on Computer-Supported Collaborative Learning (Euro-CSCL 2001). (2001)

7. Marsella S., Johnson, W.L., LaBore, C: Interactive Pedagogical Drama for Health
Interventions. Proceedings of the Eleventh International Conference on Artificial
Intelligence in Education (AIED 2003). Australia (2003)

8. Norling, E., Sonenberg, L: An Approach to Evaluating Human Characteristics
in Agents In Gabriela Lindemann, Daniel Moldt, Mario Paolucci, Bin Yu (eds.):
Proceedings of the International Workshop on Regulated Agent-Based Systems:
Theories and Applications (RASTA’02). Bologna, Italy (2002)

9. Norling, E., Sonenberg, L: Creating Interactive Characters with BDI Agents. In
Australian Workshop on Interactive Entertainment. Sydney, Australia (2004)

10. Novak, J. D.: The Theory Underlying Concept Maps and How to Construct Them.
http://cmap.coginst.uwf.edu/info/printer.html. Cornell University (2001)

11. Prendinger, H., Descamps, S., Ishizuka, M. MPML: A markup language for con-
trolling the behavior of life-like characters, Journal of Visual Languages and Com-
puting 15 (2004) 183–203

12. Rao, A. S., Georgeff, M. P.: BDI Agents: From Theory to Practice. Proceedings
of the First International Conference on Multi-agent Systems. San Francisco, USA
(1995)

13. Riedl, M., Saretto, C. J., Young, R. M.: Managing Interaction Between Users
and Agents in a Multi-agent Storytelling Environment. Proceedings of the 2nd
Joint International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2003). Melbourne, Australia (2003)

14. Swartout, W., Hill, R.W. Jr., Gratch, J., Johnson, W.L., Kyriakakis, C., LaBore,
C., Lindheim, R., Marsella, S., Miraglia, D., Moore, B., Morie, J.F., Rickel, J.,
Thiebaux, M., Tuch, L., Whitney, R.: Toward the Holodeck: Integrating Graph-
ics, Sound, Character and Story. Proceedings of 5th International Conference on
Autonomous Agents. Montreal, Canada. (2001)

15. Trafimow, D., Wyer, R. S. Jr.: Cognitive Representation of Mundane Social Events.
Journal of Personality and Social Psychology 64 (1993) 365–376

From Reality to Mind: A Cognitive Middle Layer 73

16. Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation over Tasks in Hybrid
Human-Agent Teams for Simulation-Based Training. Proceedings of the 2nd Joint
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2003). Melbourne, Australia (2003)

17. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-Agent Systems. Fun-
damenta Informaticae 63(2-3) (2004) 125-158

18. Full Spectrum Warrior, http://www.fullspectrumwarrior.com (2004)
19. Java Agent Development Framework, http://jade.tilab.com/
20. Jena Semantic Web Toolkit, http://jena.sourceforge.net/
21. Quicksilver 1.2, http://quicksilver.tigris.org/
22. RACER System Description, http://www.sts.tu-harburg.de/ r.f.moeller/racer/
23. W3C Web Ontology Working Group, http://www.w3.org/2001/sw/WebOnt/

A Spatially Dependent Communication Model
for Ubiquitous Systems

Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano–Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{bandini, manzoni, vizzari}@disco.unimib.it

Abstract. Models and conceptualizations are necessary to understand
and design ubiquitous systems that are context–aware not just from a
technological point of view. The current technological trend depicts a
scenario in which space, movement, and more generally the environment
in which the computation takes place, represent aspects that should be
considered as first class concepts. The aim of this paper is to propose the
Multilayered Multi-Agent Situated System (MMASS) model as a suitable
support for the definition of conceptual architectures for ubiquitous sys-
tems. The model provides a strong concept of agent environment, which
represents an abstraction of a physical environment possibly interfaced
with representations of conceptual aspects as well. The agent interaction
model provides two basic mechanisms (reaction and field emission) that
are strongly dependent on the spatial structure of the environment. Af-
ter a brief presentation of MMASS, related concepts and mechanisms, a
sample application domain illustrating how it can be adopted to model
an ubiquitous system will be given.1

1 Introduction

The current trend of technological innovations is transforming the environment
where human actors live and the way in which they perceive their interactions.
Computers are “disappearing”, their computational power is no more concen-
trated in identifiable spots, rather it is ubiquitous and can be potentially em-
bedded in almost every object populating the environment. Interaction is also
changing its nature, since it is not necessarily performed through traditional
devices connected to traditional computers. Computation is spread in the envi-
ronment, actors move in it carrying mobile devices of different kinds and access
the “network” in different ways. In this new scenario the movement in a space
and the related possibility to interact with other actors, according to the cur-
rent location, represent new dimensions that must be taken into account as first

1 The work presented in this paper has been partially funded by the Italian Min-
istry of University and Research within the FIRB project ‘Multichannel Adaptive
Information Systems’

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 74–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Spatially Dependent Communication Model 75

class concepts. The environment influences what can be done and how tasks are
performed, as the location influences communication capabilities and resources.

Technological evolution is not combined with an equally rapid evolution of
the conceptualization necessary to understand and govern the new situation [27].
The term context–aware has been introduced to represent new challenges and
possibilities, but it is usually interpreted in technological terms, mainly, of phys-
ical localization and available resources (e.g. network connectivity). However the
concept of context is a continuum of physical and logical aspects that do not
only involve communication as an isolated event but also coordination and co-
operation among actors moving in a logical space related to collaborative tasks.
Interpreting the physical and logical space as separated worlds is a serious imped-
iment to consider space as a basic dimension for computing systems adaptability.
What we call “logical space” received a lot of attention and many approaches
have been proposed to model the involved actors and their coordination as well
as the involved informational entities (see, e.g., [17, 21]). The emphasis is mainly
on their mutual logical relationships, while the spatial one is simulated and man-
aged in the same way as any other one, specifically without considering topology
and metrics in an explicit way. On the other hand, the approaches primarily ori-
ented to model the space give, at different degrees, a semantics to the various
spatial entities and to their spatial relationships (see, e.g., [13]) but are not open
to represent relationships of a different nature. Therefore a model able to han-
dle space as a first class concept, but also to consider in a uniform way both
physical and logical spaces, is still needed. These different spaces should both be
considered, but not in a mixed way: a good model should reach the above goal
by distinguishing the two kinds of space and at the same time by guaranteeing
their interoperability (thanks to the above mentioned uniformity).

The design of ubiquitous systems cannot rely on global states or actors own-
ing a global view of the system. On the contrary, control is fully distributed
among entities owning a local state and a partial, subjective perception of their
situation. Locality, perception, point of view are concepts that, once again, re-
quire a space where they can be defined. Fully distributed control and local
autonomy is a typical characteristic of many agent based models [6]. Moreover
the Multi-Agent Systems (MASs) approach has often been indicated as a suit-
able abstraction for the analysis and design of complex systems characterized by
an inherent distribution of control and information sources [16]. Agent technol-
ogy has also been considered an instrument to promote software interoperation
(see, e.g., [9]), and the concepts and methodologies used for analysis and design
of MASs (see, e.g., GAIA [26, 28]) can be adopted in general for the modelling
and design of complex distributed systems that, strictly speaking, are not agent-
oriented from a software engineering point of view. Hence this approach can be
applied to the design of a variety of systems. Agent interaction models how-
ever generally do not consider the spatial dimension of agent environment in an
explicit way (topology and metrics).

The presence of different reference spaces, representing different classes of
relationships among autonomous entities, requires a model able to represent a

76 S. Bandini, S. Manzoni, and G. Vizzari

variety of spaces without imposing a hierarchy among them. In fact the behavior
of a system exploiting different layers representing logical spaces and abstrac-
tions of the physical one emerges from the mutual interactions among them.
The aim of this paper is to propose a model that incorporates features fulfilling
the above requirements for the modelling of complex context–aware ubiquitous
systems: the Multilayered Multi–Agent Situated System (MMASS) [1] model.
The MMASS model provides a rich interaction model for agents, including syn-
chronous reaction among adjacent entities and asynchronous interaction through
the field emission–diffusion–perception mechanism. Both interactions are depen-
dent on the spatial structure in which agents are placed, that can represent a
physical space abstraction but also conceptual environments as well. The follow-
ing section will briefly describe the MMASS model, highlighting the relationships
with related works in agent interaction models and introducing the main con-
cepts defined by the model. Section 3 will exploit MMASS in order to define
a specific conceptual architecture for ubiquitous computing applications in the
automotive area. Conclusions and future developments will end the paper.

2 MMASS Model

The Multilayered Multi-Agent Situated Systems (MMASS) model [1] is a formal
and computational framework for the definition of systems made up of a set of
autonomous entities acting and interacting in a structured environment. This
section does not represent a formal description of the model (that can be found
in [2]), but will briefly introduce its main concepts, specifically focusing on the
environmental structure. In fact the latter deeply influences agents behaviour,
as the environment is the source of their perceptions, a constraint limiting their
actions (e.g. their movement), but it also provides them a medium to interact
with other entities. First of all related works and their relationships with agent
environment modelling will be described, then the MMASS and its main concepts
will be introduced.

2.1 Agent Environment in Agent Interaction Models

Most models for agent–based systems generally provide direct–interaction mech-
anisms that do not consider the circumstances and context of the interaction.
Agent environment is generally represented by a communication infrastructure,
often implemented through a facilitator agent that is well–known by other en-
tities. It acts as a directory, supplying agents with information related to other
entities currently active in the system (often referred to as social knowledge), and
allowing a direct information exchange among them. In some approaches in this
area, the issue of agent discovery is tackled with more complex techniques, pro-
viding a set of middle agents collaborating to collect, maintain and provide social
knowledge. In particular, some of these approaches provide a thorough analysis
of the structure of this organization of middle agents in order to provide specific
features (e.g. robustness) [22], other propose a self-organization approach to ob-

A Spatially Dependent Communication Model 77

Agent interaction

Direct Indirect

Acquaintance a priori
Agent discovery

through middle agents
Agent discovery

through middle agents
and acquaintance models

Guided/mediated by
artifacts

Mediated by agents’
environment

Fig. 1. A possible taxonomy of agent interaction models

tain a flexible, dynamic, yet effective, way of obtaining a robust infrastructure
for social knowledge [23]. Other results of the research in this area led to the
specification of acquaintance models [14] defining more precisely how this kind of
agent social knowledge should be managed. However communication is generally
conceived as an indiscriminate point–to–point message transfer, where messages
comply to rules defined by a specific Agent Communication Language (ACL)
(see, e.g., [11]). The concept of environment is thus rather weak, and in order to
obtain a communication that is aware of the context in which interlocutors are
placed, the involved elements (spatial or conceptual features of the environment)
must be modelled and included in an agent (that can be one of the communica-
tion partners, or both of them, or even another facilitator playing the role of the
environment). In this way conceptual elements (i.e. interaction and spatial con-
text management) are mixed–up with other aspects related to domain specific
issues (e.g. agents behaviour) and often delegated to ad–hoc implementations.

Other approaches provide an indirect agent interaction model, in which agents
exchange information through specific artifacts and mechanisms. These artifacts
represent agents’ environment, at least for what concerns their means of inter-
action. Some models are not aimed at bringing this metaphor to the extreme,
and do not mean to represent a comprehensive environmental model, but are
only meant to provide a unified framework for agent interaction and coordi-
nation. In fact many of them provide extensions to the basic tuple-space-based
approaches (see, e.g., Lime [19]), in order to support developer of agent based and
distributed applications with a technical support for coordination in distributed
and mobile environment. An interesting approach to indirect agent interaction is
represented by the notion of Agent Coordination Context [17], which represents
a first class abstraction to model a specific part of agents’ environment focused
on their social activities. In fact it captures concepts like roles, permissions and
other organizational abstractions, representing also a mean for managing them
at runtime, for instance in order to enforce the compliance to specific social rules.

The interaction model described in this paper differs from the previously
introduced approaches as it offers interaction mechanisms that are strongly de-
pendent on the spatial structure of the environment in which the involved entities
are placed. Fig. 1 illustrates a possible taxonomy of agent interaction models,
which is inspired and partly based on the one that can be found in [18]. In

78 S. Bandini, S. Manzoni, and G. Vizzari

particular, the interaction model defined by MMASS can be placed in the cate-
gory providing agent interaction mediated by agents’ environment. A MAS ap-
proach that provides abstractions and concepts for environment representation
and space–dependent form of communication comparable to the MMASS action–
at–a–distance is Swarm [15]; other projects are based on it and propose the same
kind of interaction model (e.g. Ascape 2, Repast 3, MASON 4). Swarm is a multi–
agent software platform focused on supporting the design and implementations
of MASs that are based on purely reactive agents. The idea that agents should
be able to understand and exploit an ACL can be unrealistic (and unnecessary)
when one has to model biological systems made up of very simple entities for
simulations. Moreover very simple entities exploiting their environment in or-
der to interact among each other are able to generate fairly complex emergent
behaviours. However this approach provides an explicit representation of the en-
vironment in which agents are placed, and even a mechanism for the diffusion
of signals (i.e. digital pheromones) in particular versions of these structures. Re-
cent results in the area of self-organizing systems (see, e.g., [10]) are aimed at
a thorough formalization and a generalization of this kind of interaction model
(often referred to as stigmergy) and its application in the engineering of MASs.

Another approach [13] provides a physically grounded model for agent in-
teraction based on the concept of computational fields (Co-Fields). Co-Fields
are signals that may be emitted either by the agents or by other elements of
the environment, which supports the diffusion of those signals and thus agent
interaction. In this model, agents are constantly guided by fields, that represent
a mean of motion coordination, while in MMASS every perception of a field
triggers a single generalized action (i.e. not strictly related to agent motion).

A different situated MASs approach [24], derived by the Influence/Reaction
model [7], focuses instead on the definition of a model for simultaneous agent
actions, including centralized and (local) regional synchronization mechanisms
for agent coordination. In particular, actions can be independent or interfering
among each other; in the latter case, they can be mutually exclusive (concur-
rent actions), requiring a contemporary execution in order to have a successful
outcome (joint actions), or having a more complex influence among each other
(both positive or negative). However, no specific mechanism for the interaction
among agents occupying distant points in the environment is provided. More-
over in this approach agents’ environment is related to a single layer of spatial
representation.

The MMASS model provides an explicit representation of agent environ-
ment, that is made up of a set of interconnected layers whose structure is an
undirected graph of sites. These layers may represent abstractions of an actual
physical environment but can also be related to “logical” aspects as well (e.g.
the organizational structure of a company). Between these layers specific con-

2 http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/README.html
3 http://repast.sourceforge.net
4 http://cs.gmu.edu/ eclab/projects/mason/

A Spatially Dependent Communication Model 79

nections (interfaces) can be specified. The latter are used to specify that a given
field type, generated in one of these layers, may also propagate into a differ-
ent one. This mechanism allows to generate interactions among different aspects
and levels of the system. Field based interaction is the first mechanism for agent
interaction, allowing a multicast form of interaction among agents occupying
distant points in their environment. Adjacent agents may also perform a coordi-
nated change of their state through a reaction, which is the second mechanism
for agent interaction.

The model has been successfully applied to several simulation contexts in
which the concepts of space and environment are key factors for the problem
solving activity and cannot be neglected (e.g. crowd modelling [3], localization
problems [4]). The following subsections will briefly introduce the model and
the formal definitions of concepts that will be exploited to define conceptual
architectures in the ubiquitous computing area.

2.2 An Overview of MMASS Model

According to the MMASS model agents are situated in sites, that is, nodes of the
graphs related to a layer of the environment. Every site may host at most one
agent (according to a non-interpenetration principle: “two agents cannot occupy
the same site at the same time”), and every agent is situated in a single site at
a given time (non–ubiquity: : “at a given time an agent occupies a single site”).
Agents inherit the spatial relationships defined for the site it is occupying; in
other words an agent positioned in site p is considered adjacent to agents placed
in sites adjacent to p.

The adjacency relation among agents is a necessary condition for the applica-
bility of reaction, the first kind of interaction mechanism defined by the MMASS
model. In fact this operation involves two or more agents that are placed in ad-
jacent sites and allows them to synchronously change their state, after they
have performed an agreement. This mechanism resembles the one defined by
transition rules in Cellular Automata (CA) [25], that also provide an explicit
representation of a spatial structure.

CA are the model that has mainly inspired MMASS specification, and one
of the main differences between the two models is the possibility to represent
action–at–a–distance. In fact, the second interaction mechanism defined by the
MMASS model provides the possibility for agents to emit fields, that are signals
able to diffuse through the environment that can be perceived by other agents
according to specific rules. This mechanism resembles pheromone approaches
to agent communication (see, e.g., [10]), but fields are not just related to an
intensity value and may convey more complex kind of information. Moreover for
every field type a diffusion function can be specified in order to define how related
signals decay (or are amplified) during their diffusion in the environment, from
the source of emission to destination sites. Other functions specify how fields of
the same kind can be composed (for instance in order to obtain the intensity of a
given field type at a given site) or compared. From a semantic point of view fields
themselves are neutral even if they can have related information in addition to

80 S. Bandini, S. Manzoni, and G. Vizzari

their intensity; they are only signals, with an indication on how they diffuse
in the environment, how they can be compared and composed. Different agent
types may be able to perceive them or not and, in the first case, they may have
completely different reaction, according to their behavioural specification. With
reference to perception, an agent may perceive a field with a non–null intensity
active in the site it is situated on according to two parameters characterizing
its type and related to the specific field type. The first one is the sensitivity
threshold, indicating the minimum field intensity that an agent of that type is
able to perceive. The second is the receptiveness coefficient and it represents an
amplification factor modulating (amplifying or attenuating) field value before
the comparison with the sensitivity threshold. Thanks to these parameters it is
possible to model dynamism in the perceptive capabilities of agents of a give
type, since these parameters are related to agent state. In this way, for instance,
the same agent that was unable to perceive a specific field value could become
more sensitive (increase its own receptiveness coefficient) as a consequence of a
change in its state. This allows to model physical aspects of perception, but also
conceptual ones such as agent interests.

Reaction and field emission are two of the possible actions available for the
specification of agent behaviour, related to the specification of how agents may
interact. Other actions are related to the possibility to move (transport opera-
tion) and change the state upon the perception of a specific field (trigger oper-
ation). These primitives are part of a language for the specification of MMASS
agents behaviour [2]. An important part of the language also provides the pos-
sibility to dynamically modify the structure of agent environment, in order to
generate new sites and edges (or destroy existing ones) and create (or destroy)
agents of a specific type, with a given initial state. Agent type is in fact a speci-
fication of agent state, perceptive capabilities and behaviour.

2.3 MMASS: Formal Definitions

A Multilayered Multi–Agent Situated System (MMASS) is defined as a constella-
tion of interacting Multi-Agent Situated System (MASS) that represent different
layers of the global system:

〈
MASS1 . . . MASSn

〉
. A single MASS is defined by

the triple
〈
Space, F, A

〉
where Space models the environment where the set A of

agents is situated, acts autonomously and interacts through the propagation of
the set F of fields and through reaction operations.

The structure of a layer is defined as a not oriented graph of sites. Every site
p ∈ P (where P is the set of sites of the layer) can contain at most one agent
and is defined by the 3–tuple

〈
ap, Fp, Pp

〉
where:

– ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when no agent is situated
in p that is, p is empty);

– Fp ⊂ F is the set of fields active in p (Fp = ∅ when no field is active in p);
– Pp ⊂ P is the set of sites adjacent to p.

In order to allow the interaction between different MMASS layers (i.e. intra-
MASS interaction) the model introduces the notion of interface. The latter spec-

A Spatially Dependent Communication Model 81

ifies that a gateway among two layers is present with reference to a specific field
type. An interface is defined as a 3–tuple

〈
pi, pj , Fτ

〉
where pi ∈ Pi, pj ∈ Pj ,

with Pi and Pj sets of sites related to different layers (i.e. i = j). With reference
to the diffusion of field of type Fτ the indicated sites are considered adjacent
and placed on the same spatial layer. In other words fields of type Fτ reaching
pi will be diffused in its adjacent sites (Pp) and also in pj .

A MMASS agent is defined by the 3–tuple < s, p, τ > where τ is the agent
type, s ∈ Στ denotes the agent state and can assume one of the values specified
by its type (see below for Στ definition), and p ∈ P is the site of the Space where
the agent is situated. As previously stated, agent type is a specification of agent
state, perceptive capabilities and behaviour. In fact an agent type τ is defined by
the 3–tuple

〈
Στ , P erceptionτ , Actionτ

〉
. Στ defines the set of states that agents

of type τ can assume. Perceptionτ : Στ → [N×Wf1] . . . [N×Wf|F |] is a function
associating to each agent state a vector of pairs representing the receptiveness
coefficient and sensitivity thresholds for that kind of field. Actionτ represents
instead the behavioural specification for agents of type τ . Agent behaviour can
be specified using a language that defines the following primitives:

– emit(s, f, p): the emit primitive allows an agent to start the diffusion of field
f on p, that is the site it is placed on;

– react(s, ap1 , ap2 , . . . , apn
, s′): this kind of primitive allows the specification

a coordinated change of state among adjacent agents. In order to preserve
agents’ autonomy, a compatible primitive must be included in the behavioural
specification of all the involved agents; moreover when this coordination pro-
cess takes place, every involved agents may dynamically decide to effectively
agree to perform this operation;

– transport(p, q): the transport primitive allows to define agent movement
from site p to site q (that must be adjacent and vacant);

– trigger(s, s′): this primitive specifies that an agent must change its state
when it senses a particular condition in its local context (i.e. its own site
and the adjacent ones); this operation has the same effect of a reaction, but
does not require a coordination with other agents.

For every primitive included in the behavioural specification of an agent type
specific preconditions must be specified; moreover specific parameters must also
be given (e.g. the specific field to be emitted in an emit primitive, or the condi-
tions to identify the destination site in a transport) to precisely define the effect
of the action, which was previously briefly described in general terms.

Each MMASS agent is thus provided with a set of sensors that allows its
interaction with the environment and other agents. At the same time, agents
can constitute the source of given fields acting within a MMASS space (e.g.
noise emitted by a talking agent). Formally, a field type t is defined by

〈
Wt,Diffusiont, Comparet, Composet

〉

where Wt denotes the set of values that fields of type t can assume; Diffusiont :
P × Wf × P → (Wt)+ is the diffusion function of the field computing the value

82 S. Bandini, S. Manzoni, and G. Vizzari

of a field on a given space site taking into account in which site (P is the set
of sites that constitutes the MMASS space) and with which value it has been
generated. Composet : (Wt)+ → Wt expresses how fields of the same type have
to be combined (for instance, in order to obtain the unique value of field type
t at a site), and Comparet : Wt × Wt → {True, False} is the function that
compares values of the same field type. This function is used in order to verify
whether an agent can perceive a field value by comparing it with the sensitivity
threshold after it has been modulated by the receptiveness coefficient.

3 A MMASS Architecture for Ubiquitous Systems

In order to exemplify the MMASS as a model for the design of conceptual archi-
tectures in the ubiquitous computing area, a sample application scenario in the
automotive context will be introduced. In fact modern cars are equipped with a
large number of sensors (for instance related to the state of brakes, steering and
other vehicle subsystems) and are equipped with various microcontrollers (e.g.
devoted to engine control, air conditioning [20]). Information related to these de-
vices is generally exploited to allow, enhance or maintain vehicle operation, but
is otherwise wasted. The interconnection among these devices is generally de-
veloped according to some vehicular network, commonly called Controller Area
Network [12]. According to this trend in automotive technology, it is thus pos-
sible to design new devices which are able to interface with existing electronic
modules, in order to store relevant data, perform some kind of elaboration (e.g.
check for crash conditions, perform self diagnosis), and communicate with exter-
nal systems through wireless communication devices. These new technological
devices could be designed in order to support new applications based on the
interaction among autonomous mobile computational units spread in the envi-
ronment and other fixed–position centres, that manage them in order to offer
services that are aware of the context of the remote units.

Part of this concept of context is surely represented by an abstraction of
the spatial structure of the environment, which may represent a map indicating
conceptual communications flows among the various entities. This abstraction
may be mapped to a MMASS layer, but also others aspects of the global system
may be modelled through different layers interfaced to the previous one. Fig. 2
shows a possible arrangement of three MMASS layers respectively devoted to the
management of the spatial aspects, of the emergency management context and
to location–aware touristic information provisioning. In the following subsections
more details on how these coordinated contexts may me modelled in terms of
MMASS will be given.

3.1 Spatial Abstraction Layer

The typical ubiquitous computing scenario provides a number of mobile devices
that are able to communicate with other entities, in order to offer some kind of
service to end–users. The nature of offered services is a key factor in determining

A Spatially Dependent Communication Model 83

Touristic
information and
advertisement

layer

Emergency
management

layer

Spatial
abstraction

layer

Other conceptual
representation

layer

Fig. 2. The multilayered structure of the described application, highlighting interfaces
among layers

a possible architecture for such systems, but in general those mobile devices will
communicate with another kind of entity, that can be thought to have a fixed
position which could even be not particularly relevant to the application. This
entity could be a centralized storage and elaboration facility, or it could be part
of a composite network, with different nodes that collaborate in order to supply
services to the end–user.

A diagram showing this kind of architecture is shown in Fig. 3: in this case
the spatial structure is an abstraction of the physical space adopted to define and
manage communications in the system. In other words it is used to define which
node will manage requests issued by the remote mobile entity. For example, a
car fleet management system could be made up of different immobile entities,
serving vehicles spread over the territory, connected through a central storage
facility; the GSM standard provides a similar architecture with decentralized
management of mobile terminals but a centered entity (the Home Location Reg-
ister [8]) for the storage of subscribers data. In some situations such a central
entity is not required, but when acquired and stored data must be analyzed (for
instance with data mining techniques in order to derive profiling information)
it can be appropriate to have a single data storage facility. On the other hand,
if the system only has to supply an emergency assistance service to end–users
represented by car drivers, there could be just decentralized centres. The area
covered by the service can be partitioned into several sub–areas, and every user
should be initially registered to a specific peripheral assistance centre (complex
units including people, PCs, computer networks, and so on), at the moment of
service subscription. The user can be handled by this unit while he/she remains
in this area, and when his/her vehicle moves into another area the two periph-
eral centres could exchange information related to the user. Even in this case
there are similarities with architectures designed for mobile wireless device. In
fact this kind of operation involving peripheral centres can be viewed as a non–
critical form of handover, and the management of this event could be derived by
protocols designed in that area.

84 S. Bandini, S. Manzoni, and G. Vizzari

Mobile
entity b

Mobile
entity a

Elaboration
centre

Peripheral
centre a

Peripheral
centre b

Peripheral
centre c

Mobile
entity e

Mobile
entity c

Mobile
entity d

Mobile
entity f

Fig. 3. A possible architecture for ubiquitous applications in the automotive domain

Exploiting the explicit description of the environment that the MMASS ap-
proach provides it is possible to take into account the different structures of
logical connections (i.e. which peripheral centre is currently managing a specific
mobile entity) to model the interactions among entities of the system. From a
conceptual point of view, the previously described interactions between periph-
eral centres and mobile entities (i.e. authentication and login procedure, and
mobile entities handover) can be modelled as reactions. In fact the initial inter-
action among mobile entities and peripheral centres can be considered a syn-
chronous agreement process in which the former identifies itself and the latter
grants access to the offered services.

In order to model the login procedure a reaction primitive must be included
in ActionPC , the behavioural specification for peripheral centres (PC agents). A
compatible reaction should be included in the behavioural specification of agents
related to mobile entities(ME agents). In particular, the reaction for PC agents
can be specified as follows:

action : react
(〈

Sa, S
〉
, am,

〈
S′

a, S
〉)

condit : position(p), position(am, q), near(p, q), agreed(am)
eff ect : S′

a = Sa ∪ {am}

The state of an agent of type PC is a pair made up of the set of mobile
entities that it is currently managing (Sa) and other internal information (S),
which is not relevant for the example. The interaction takes place only if the
agent and the mobile entity are adjacent in the spatial structure they are placed
on and have agreed to react (i.e. the mobile entity has successfully performed
an authentication procedure). The effect of the reaction is the inclusion of the
mobile entity am in the set of the ones that are served by the peripheral centre
(S′

a = Sa ∪ {am}).
Other possible interactions involving agents situated in the spatial abstrac-

tion layer are related to the diffusion of information by the peripheral centre

A Spatially Dependent Communication Model 85

Op. A
idle position

Op. B
idle position

Op. C
idle position

Op. A
busy position

Op. B
busy position

Op. C
busy position

Op. A
heavy load

position

Op. B
heavy load

position

Op. C
heavy load

position

Dispatcher

Op. A Op. B

Op. C

Emergency
request field

Emergency
managed field

Fig. 4. A model of driver assistance context

to all the mobile entities that are currently present in its area (i.e. which are
currently connected to it by an edge and included in the list of authenticated
entities included in its state). In this case, the diffusion function should provide
that signals reach the mobile entities unmodified, but a perceptive mechanism
related to interests of the mobile user could be adopted to filter signals that are
not relevant to him/her could be devised. This layer could thus also represent
the basic structure for location aware diffusion of information, for instance re-
lated to road/traffic condition information or even touristic advertisement. This
information could be suitably originated by different layers interfaced to this
one: an example of this possibility will be described in Section 3.3.

3.2 Emergency Management Layer

The previously described layer represents just one of the aspects of the whole
system, the one related to communication flows, that are dependent on spatial
features, but it does not specify anything on the structure of peripheral centres
and how they perform the services offered to the end–user. In order to define the
behaviour of those peripheral centres a new conceptual spatial structure, inter-
faced to the physical spatial abstraction layer, should be defined. Fig. 4 shows
a possible conceptual representation related to the operation of an organization
for the management of emergency signals coming from mobile entities.

The central node, the interface to the spatial abstraction layer, hosts a dis-
patcher agent that must propagate the emergency request issued by a user or by
a mobile entity in the structure defined in Fig. 3. This request is augmented with
contextual information, such as data related to the user and vehicle, indications
on its location, and so on. The latter can be obtained by integrating raw data
transmitted by the mobile entity with a cartography and other information that
might be obtained by a GIS of by a traditional information system as well. In
other words, this node may enhance the information provided by the remote

86 S. Bandini, S. Manzoni, and G. Vizzari

entity, also providing an indication on the urgency of the request by interpreting
data related to the vehicle (e.g. a sudden stop may be related to a crash, and
the deceleration rate may indicate the severity of this event). The dispatcher
diffuses information related to the event that must be handled through a field
that reaches all adjacent sites, on which idle operators are placed, but does not
reach outer sites, related to busy operators. An idle operator may then emit a
field countering the previous one (i.e. indicates to other operators, through the
information system, the fact that he will deal with this event) and transport
itself on the related outer site, being currently busy.

With reference to the MMASS model the previously described mechanism
can be obtained through the definition of a field type related to emergencies Fe

that is specified as

Fe =
〈
We,DiffusionFe , Compareh, Composeh

〉

where we ∈ We : we =
〈
ide, typee, inte, de

〉
represents the possible values

assumed by the field. Its composing parts have the following meaning: ide rep-
resents a unique identifier of the emergency request, typee (that can assume
request or managed values) indicates that the field is related to the request
issued by the dispatcher or represents a counter field emitted by an operator,
inte ∈ N is the intensity of the signal, and de is the additional data related to
the emergency (which is not relevant for the example). The diffusion function
specifying how this field is spread into the spatial structure is defined as follows:

DiffusionFe
(p0, fp0 , p) =

⎧⎪⎨
⎪⎩

fe typee = managed〈
ide, typee, inte − dist(p0, p), de

〉
dist(p0, p) < inte

0 otherwise

The comparison function uniformly returns true, as all requests are perceivable
by operators, and fields do not compose at all with the exception of the combi-
nation of request and managed field related to the same emergency. Formally
Compose

(〈
ide, managed, inte, de

〉
,
〈
ide, request, inte, de

〉)
= ∅. With reference

to field persistence in the environment, the ones marked as request do not van-
ish while managed ones have an instantaneous effect (i.e. they counter related
request signals) and then are discarded.

The dispatcher performs a diffusion of a request field for all fields related to
emergencies (which are generated in the spatial abstraction layer and forwarded
to this layer thanks to a specific interface) that it perceives. The value of the
emitted field is w1

e =
〈
ide, request, 2, de

〉
, as it must be able to reach idle oper-

ators but not busy ones. An idle operator perceiving this signal and willing to
manage the related request, should thus perform an emission of a counter field
w2

e =
〈
ide, managed, k, de

〉
, that will be uniformly diffused in the environment

and will cancel the request signal. After that it will transport itself on an outer
position (the one related to the busy state). Particularly urgent requests may
have a higher starting intensity, and could thus reach even outer sites. A busy
operator perceiving this field may decide to delay the current lower priority task

A Spatially Dependent Communication Model 87

Company
C

Company
G

Central
advertisement

agency

Advertisement
agency A

Advertisement
agency B

Company
E

Company
B

Company
A

Company
F

Company
D

Fig. 5. A model of advertisement management context

to manage the new emergency, moving to the outermost site (related to the
heavy load state) in order to be shielded even from these urgent requests.

3.3 Touristic Information and Advertisement Layer

Considering another case, related to touristic information and advertisement,
the layer shown in Fig. 3 defines the communication mechanism among the
most suitable local information supplier and the active boxes spread over the
area it is related to. However, the spatial abstraction layer does not specify
anything on how companies may interact among themselves and refer to local or
central advertisement agencies, in order to diffuse information related to their
offers. Fig. 5 shows a possible conceptual representation related to this kind of
scenario.

Thanks to the possibility to modify the spatial structure (e.g. creating or de-
stroying sites and edges), agents related to Companies A, B and C have elected
Company A as a representative that is responsible for the interaction with the
Advertisement agency A. In other words it is the only one connected to the
site related to the agency, with which it will interact through reaction opera-
tions. Companies D, E and F are instead interacting directly with Advertisement
agency B, which will be able to diffuse information related to policies and of-
fers through a diffusion operation. While these companies operated at a local
level, Company G interacts directly with a Central advertisement agency. The
latter will perform a reaction involving both Advertisement agencies A and B.
The interface among this layer and the one related to the abstraction of agents’
physical space, shown in Fig. 3, provides a direct connection among Peripheral
centres and local Advertisement agencies, which will be able to emit specific
fields that will be perceived by peripheral centres which will in turn emit signals
perceivable by mobile entities positioned in their areas.

88 S. Bandini, S. Manzoni, and G. Vizzari

4 Conclusions and Future Developments

In this paper a framework for the definition of structured environments for multi–
agent systems has been introduced. The MMASS model provides an explicit rep-
resentation of agents’ environment and interaction mechanisms that are strongly
dependent on the position of involved agents and on the spatial structure of the
environment.

The model, which has been previously applied to several simulation scenarios
in which agent space and environment is a fundamental aspect, has been ex-
ploited to represent an ubiquitous system in the automotive area. This scenario
provided mobile entities capable of storing data acquired from internal or exter-
nal sensors, provided with computational and communication capabilities (i.e.
active–boxes), but also to describe the interaction of entities in a specific applica-
tion (i.e. emergency assistance centre). Different MMASS layers were described
representing physical or conceptual abstractions specifying different aspects of
the modelled system. The interaction model defined by MMASS was exploited
in order to represent the communication among various entities of the system.

The design of a comprehensive software layer implementing a platform for
MMASS concepts is the object of current and future developments; a first step
in this direction was the analysis of distributed approaches to field diffusion [5].
Another important aspect that must be faced in order to simplify the transition
from modelling to design and implementation phases is a mapping between the
MMASS interaction model and possible underlying communication technologies,
which are often very distant from the mechanism defined by the model.

References

1. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multi–Agent Systems:
a Model for Situated MAS. In: Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems, ACM Press (2002) 1183–1190

2. Bandini, S., Manzoni, S., Simone, C.: Heterogeneous Agents Situated in Hetero-
geneous Spaces. Applied Artificial Intelligence 16(9-10) (2002) 831–852

3. Bandini, S., Manzoni, S., Vizzari, G.: Situated Cellular Agents: a Model to Simulate
Crowding Dynamics. IEICE Transactions on Information and Systems: Special
Issues on Cellular Automata E87-D(3) (2004) 669–676

4. Bandini, S., Manzoni, S., Vizzari, G.: MultiAgent Approach to Localization Prob-
lems: the Case of Multilayered Multi Agent Situated System. Web Intelligence and
Agent Systems 2(3) (2004) 155–166

5. Bandini, S., Manzoni, S., Vizzari, G.: Towards a Specification and Execution Envi-
ronment for Simulations Based on MMASS: Managing At–a–distance Interaction.
In Trappl, R., ed.: Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Austrian Society for Cybernetic Studies (2004) 636–641

6. Ferber, J.: Multi–Agent Systems. Addison–Wesley (1999)
7. Ferber, J., Muller, J.P.: Influences and Reaction: a Model of Situated Multia-

gent Systems. In: Proceedings of the 2th International Conference on Multi-agent
Systems, AAAI Press (1996) 72–79

A Spatially Dependent Communication Model 89

8. Gabelgaard, B.: The (GSM) HLR-Advantages and Challenges. In: Third Annual
International Conference on Universal Personal Communications, IEEE (1994)
335–339

9. Genesereth, M.R., Ketchpel, S.P.: Software Agents. Communications of the ACM
37(7) (1994) 48–ff.

10. Hadeli, K., Valckenaers, P., Zamfirescu, C., Brussel, H.V., Germain, B.S., Holvoet,
T., Steegmans, E.: Self-Organising in Multi-Agent Coordination and Control Using
Stigmergy. In: Engineering Self-Organising Systems: Nature-Inspired Approaches
to Software Engineering. Volume 2977 of Lecture Notes in Computer Science.,
Springer–Verlag (2004) 105–123

11. Labrou, Y., Finin, T.W., Peng, Y.: Agent Communication Languages: the Current
Landscape. IEEE Intelligent Systems 14(2) (1999) 45–52

12. Leen, G., Heffernan, D.: Expanding Automotive Electronic Systems. IEEE Com-
puter 35(1) (2002) 88–93

13. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a Unifying Approach
to the Engineering of Swarm Intelligent Systems. In: Engineering Societies in the
Agents World III: Third International Workshop (ESAW2002). Volume 2577 of
Lecture Notes in Artificial Intelligence., Springer–Verlag (2002) 68–81

14. Mař́ik, V., Pěchouček, M., Štěphanková, O.: Social Knowledge in Multi-Agent
Systems. In: Multi-Agent Systems and Applications. Volume 2086 of Lecture Notes
in Artificial Intelligence., Springer–Verlag (2001) 211–245

15. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation Sys-
tem: a Toolkit for Building Multi-Agent Simulations. Working Paper 96-06-042,
Santa Fe Institute (1996)

16. Nwana, H.S., Ndumu, D.T.: A Perspective on Software Agents Research. The
Knowledge Engineering Review 14(2) (1999) 125–142

17. Omicini, A. In: Towards a Notion of Agent Coordination Context. CRC Press
(2002) 187–200

18. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3) (1999) 251–269 Special Issue:
Coordination Mechanisms for Web Agents

19. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda Meets Mobility. In: Pro-
ceedings of the 21st International Conference on Software Engineering (ICSE99),
ACM press (1999) 368–377

20. Prasad, V.K.: What Pervasive Computing Brings to Automotive Consumer Expe-
riences, Services, Products & Processes. Presented at PC2001 NIST, Gaithersberg,
Maryland (2001)

21. Ricci, A., Viroli, M., Omicini, A.: Agent Coordination Context: From Theory
to Practice. In Trappl, R., ed.: Proceedings of the 17th European Meeting on
Cybernetics and Systems Research, Austrian Society for Cybernetic Studies (2004)
618–623

22. Tichý, P.: Robustness of Social Knowledge in Multi-Agent Systems. In Trappl,
R., ed.: Proceedings of the 17th European Meeting on Cybernetics and Systems
Research, Austrian Society for Cybernetic Studies (2004) 552–557

23. Wang, F.: Self-Organising Communities Formed by Middle Agents. In: Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2002), ACM Press (2002) 1333–1339

24. Weyns, D., Holvoet, T.: Model for Simultaneous Actions in Situated Multi-Agent
Systems. In: First International German Conference on Multi-Agent System Tech-
nologies, MATES. Volume 2831 of LNCS., Springer–Verlag (2003) 105–119

90 S. Bandini, S. Manzoni, and G. Vizzari

25. Wolfram, S.: Theory and Applications of Cellular Automata. World Press (1986)
26. Wooldridge, M.J., Jennings, N.R., Kinny, D.: The GAIA Methodology for Agent-

Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems 3(3) (2000) 285–312

27. Zambonelli, F., Parunak, H.V.D.: Signs of a Revolution in Computer Science and
Software Engineering. In: Proceedings of Engineering Societies in the Agents World
III (ESAW2002). Volume 2577 of Lecture Notes in Computer Science., Springer–
Verlag (2002) 13–28

28. Zambonelli, F., Wooldridge, M.J., Jennings, N.R.: Developing Multiagent Sys-
tems: the GAIA Methodology. ACM Transactions on Software Engineering and
Methodology 12(3) (2003) 317–370

ELMS: An Environment Description Language for
Multi-agent Simulation

Fabio Y. Okuyama1, Rafael H. Bordini2,1, and Antônio Carlos da Rocha Costa3,1

1 Programa de Pós-Graduação em Computação, Universidade Federal do,
Rio Grande do Sul (UFRGS), Porto Alegre RS, Brazil

okuyama@inf.ufrgs.br
2,� Department of Computer Science, University of Liverpool,

Liverpool L69 3BX, U.K
R.Bordini@csc.liv.ac.uk

3 Escola de Informática, Universidade Católica de Pelotas (UCPel),
Pelotas RS, Brazil

rocha@atlas.ucpel.tche.br

Abstract. This paper presents ELMS, a language used for the specification of
multi-agent environments. This language is part of the MAS-SOC approach to
the design and implementation of multi-agent based simulations. The approach is
based on specific agent technologies for cognitive agent programming and high-
level agent communication, as well as ELMS. We here concentrate on introducing
ELMS, which allows the description of environments in which agents are to be
situated during simulations. The ELMS language also allows the definition of the
agents’ perceptible properties and the kinds of (physical) interactions, through
action and perception, an agent can have with the objects of the environment or
the perceptible representations of the other agents in the environment.

1 Introduction

The goal of our overall project is to develop an approach and platform for the development
of multi-agent based social simulations, incorporating agent technologies for specifying
and running cognitive agents. When a multi-agent system is fully computational (i.e.,
not situated in the real world, the Internet, etc.), the specification of the (simulated) envi-
ronment where agents are situated is an important task in the engineering of the system,
which is not, however, normally addressed in the literature: environments are usually
simply considered as “given”, or sometimes environments are themselves modelled as
agents. Nevertheless, the characteristics of environments are quite different from those
of cognitive agents. Therefore, in our practical work, we identified the need for the use
of a language specifically designed for the specification of multi-agent environments.

Based on that experience, we have developed a prototype of an interpreter for an
environment definition language, presented in detail in [1] and mentioned in [2]. The

� Current affiliation: Department of Computer Science, University of Durham, Durham DH1 3LE,
U.K. E-mail: R.Bordini@durham.ac.uk.

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 91–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

language has been designed to support the description of environments for our multi-
agent based social simulations (although it may turn out to be useful more generally).
Besides the basic environment properties and objects, the language provides the means
for the specification of the “physical” representation of a simulated agent, which we refer
to as the “body of an agent”1, as well as the various kinds of physical interactions, through
action and perception, among agents and objects or other agents in the environment.

This paper is structured as follows. Sect. 2 covers the main ideas of the MAS-SOC
approach to the development of multi-agent based social simulation. We discuss the
classes of environments that can be modelled with ELMS in Sect. 3. Sect. 4 presents
ELMS itself, the language we introduce in this paper and that is designed specifically for
the modelling of multi-agent environments. Then we describe how ELMS environments
are run in Sect. 5. Besides small examples given in Sect. 4, we also give a complete
example in Appendix A.

2 The MAS-SOC Project

The main goal of the MAS-SOC project (Multi-Agent Simulations for the SOCial Sci-
ences) is to provide a framework for the creation of agent-based social simulations that,
ideally, should not require much experience in programming from users [2]. In particular,
it should allow for the design and implementation of cognitive agents and their social
actions. A graphical user interface facilitates the specification of environments, agents
(their beliefs and plans), and the simulation as a whole. It also helps the management of
libraries of simulation components. From the information input by the user, the system
generates source codes for the interpreter used for agent reasoning (from the represen-
tations of agents’ mental attitudes), and for the ELMS interpreter, whereby environment
objects and agents’ bodies are simulated.

Agents’ practical reasoning is specified in AgentSpeak(L)[3], using the Jason in-
terpreter [4] (see also [5]). We do not discuss here the AgentSpeak(L) programming
language, but one can refer to the papers mentioned above, as well as [6, 7], for a com-
plete account of that language. We here concentrate on presenting the ELMS language
and its interpreter.

The interaction between the interpreters (for agents and the environment) and the
graphical interface for creating and controlling the simulations is made possible by the
SACI toolkit, developed as part of the work reported in [8]. This tool also supports the
interactions of agents with the environment (perception and action) as well as speech-act
based agent communication, including interactions such as plan exchange2. SACI also
provides the infra-structure that makes it possible for us to run distributed simulations,
thus facilitating large-scale simulations with cognitive agents.

1 Note that in referring to agent’s bodies we do not mean to say that our approach is only applicable
to embodied agents. By “body” we simply mean whatever physical properties of an agent that
may be perceptible by other agents in the environment. This is quite general: if an environment
metaphor is present at all in the multi-agent system being developed, in all likelihood some
characteristics of the agents will be perceivable by other agents.

2 This will be available in Jason soon, as reported in [5].

ELMS: An Environment Description Language for Multi-agent Simulation 93

In summary, when using the MAS-SOC approach to develop a simulation of a social
system (where agents have cognitive features), the procedure is as follows: one first
defines an environment in ELMS (specifying objects and their interactions, the “bodies”
of the agents, and the ways these can interact with the objects through sensors and
effectors), then one defines the agents’ cognitive aspects with the use of AgentSpeak(L).

Providing mechanisms for specifying social structures explicitly (e.g. groups, organ-
isations) is part of our objectives for future work, which should also include an attempt
to reconcile cognition and emergence. This latter objective is inspired by Castelfranchi’s
idea that only social simulation with cognitive agents (“mind-based social simulations”,
as he calls it) will allow the study of agents’ minds individually and the emerging col-
lective actions, which co-evolve determining each other [9]. In others words, we aim (as
a long term objective) to provide the basic conditions for MAS-SOC to be used in the
study of a fundamental problem in the social sciences, which is of the greatest relevance
in multi-agent systems as well: the micro-macro link problem [10].

3 Multi-agent Environments

According to Wooldridge [11], agents are computational systems situated in some envi-
ronment, and are capable of autonomous action in this environment in order to meet their
design objectives. Agents perceive and interact with each other via the environment, and
they act upon it so that it reaches a certain state where their goals are achieved. There-
fore, environment modelling is an important issue in the development of multi-agent
systems where agents do not act directly on a physical or existing environment (e.g.,
as robots with real sensors and effectors, or Internet agents). This applies to reactive
as well as cognitive agent societies (as discussed below). Nevertheless, the multi-agent
systems literature seldom considers this part of the engineering of agent-based systems,
in particular when dealing with cognitive agents: environments are simply assumed as
given.

In a reactive multi-agent system, the environment plays a major role. Since reactive
agents have no memory and no high-level (i.e., speech-act based) direct communication
with each other, it is only perception of the environment that allows them to make deci-
sions on how to act. On the other hand, cognitive agents have an internal representation
of the environment, yet they make decisions (e.g., to adopt new goals, or to change
courses of actions) based on the changes that perception of the environment causes on
that representation. Thus, environment modelling is equally important for both classes of
multi-agent systems. Although some multi-agent systems may be situated in an existing
environment, in agent-based simulations the environment is necessarily a computational
process too, so modelling multi-agent environments is always an important issue in
simulations.

In [12], a number of characteristics that can be used to classify environments is
given. We refer to those classifications below so that we can characterise the classes of
environments that can be defined with ELMS.

Accessible Versus Inaccessible: Using the ELMS approach, agents have access only
to the environment properties that the simulation designer has chosen to make per-

94 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

ceptible to them. Thus, making an ELMS environment accessible or inaccessible is
a designer’s decision.

Deterministic Versus Nondeterministic: As ELMS environments can be inaccessible,
and given that there are multiple agents that can change the environment simultane-
ously, from the point of view of an agent, an ELMS environment can appear to be
nondeterministic.

Episodic Versus Non-episodic: In ELMS environments, the current state is a conse-
quence of the previous one and the actions taken by the agents in it. With cognitive
agents, past actions may influence future actions, so each simulation cycle is un-
likely to be just an isolated episode of perceiving and acting (although it is possible
to use this approach for simple reactive agents, this is not its intended use).

Static Versus Dynamic: An ELMS environment is meant to be shared by multiple
agents. As various agents can act on this environment, an agent’s action may disable
another agent’s action. Thus, from the point of view of agents, the environment can
seem dynamic.

Discrete Versus Continuous: ELMS environments tend to be discrete, through the use
of a grid to represent a physical space, although this is not compulsory.

To summarise, ELMS can be used to specify environments that are (from the point of
view of the agents): inaccessible, non-deterministic, non-episodic, and dynamic; how-
ever, they are usually discrete. This class of environments is the most complex and
comprehensive, except for the class of environments that are continuous besides all that.
However, continuous environments are notoriously difficult to simulate; although ELMS
does not prevent that, it does not give much support in that respect either. We believe that
ELMS allows the definition of rather complex environments, supporting a wide range
of multi-agent applications (in particular, but not exclusively, for social simulation).

4 The ELMS Language

Agents in a multi-agent system interact with the environment in which they are situated
and interact with each other (possibly through the shared environment). Therefore, the
environment has an important role in a multi-agent system, whether the environment
is the Internet, the real world, or some simulated environment. ELMS is intended as a
specification language for the latter form of environments.

We understand as environment modelling, the modelling of external aspects that an
agent needs as input to its reasoning and for deciding on its course of action. Also, there
is the need to model explicitly the physical actions and perceptions that the agents can
do on the environment, as will be seen in Sect. 4.1.

This section introduces the main aspects of the language we defined for the specifi-
cation of the simulated environment that is to be shared by the agents in a multi-agent
system. The language is called ELMS (Environment Description Language for Multi-
Agent Simulation).

ELMS: An Environment Description Language for Multi-agent Simulation 95

4.1 Modelling Environments with ELMS

An environment description is a specification of the properties and behaviour of the
environment. In our approach, we also include in such specification the definition of the
features of the simulated “bodies” of the agents. The modelling of such “physical” aspects
of an agent (or agent class, more precisely) includes the definitions of its properties
that may be perceived by others agents, the definitions of the kinds of perceptions that
are available for that agent, and the actions that the agent is able to perform in the
environment.

The definition of the environment includes mainly sets of: objects, to which we
interchangeably refer as resources of the environment; reactions that objects display
when agent actions affect them; an (optional) grid to allow the explicit handling of the
spatial positioning of agents and objects in the environment; and the properties of the
environment to which external observers (e.g., the users) have access.

The objects that are part of an environment can be modelled as a set of proper-
ties and a set of actions that characterise the object’s behaviour in response to stimuli.
That is, objects can react—only agents are pro-active. Agents can be considered com-
ponents of the environment insofar as, from the point of view of one agent, any other
agent is a special component of the environment (however, only certain properties of
an agent can be perceived by other agents, and this must be specified by designers
of agent-based simulations). Thus, to define agents from this point of view, it is nec-
essary to list all properties that define their perceptible aspects, a list of actions that
they are able to execute (pro-actively), and a list of the types of perception to which
they have access. From the point of view of the environment, the deliberative activ-
ities of an agent are not relevant, since they are internal to the agent, i.e., they are
not observable to the other agents in the environment. As mentioned before, in the
MAS-SOC approach the mental aspects of agents are described with the AgentSpeak(L)
language.

Quite frequently, spatial aspects of the environment are modelled in agent simu-
lations by means of a grid. Our approach provides a number of features for dealing
with grids, if the designer of the environment chooses to have one. In the constructs
that make reference to the grid, positions can be accessed by absolute or relative coor-
dinates. Relative coordinates are prefixed by ‘+’ and ‘−’ signs, so (+1,−1, +0), for
example, refers to the position at the upper right diagonal from the agent’s current po-
sition. However, the grid definition is optional, as some simulations may not require
any spatial representation. Clearly, there are simulations where the topology resulting
from specific types of agent and object positioning is the main issue of interest for
the investigation for which the simulations are being used. In contrast, there are also
simulations where the existence of a topology is not relevant at all as, e.g., in a stock
market simulation, where the main issue under consideration relate to the agent inter-
actions themselves, and perhaps agents’ interactions with some types of resources. In
order to make ELMS as general as possible, we chose to make the grid an optional
feature.

For the definition of the types of perception to which each agent class has access,
it is necessary to define which properties of the environment, agents, and objects are to
be perceived. The conditions associated with each perceptible property can be specified

96 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

as well. That is, environment designers can control: which properties of objects will be
accessible to the “minds” of the agents that are given access to a certain perception type,
and under which conditions each (potentially perceivable) property will be effectively
perceived.An action is defined as a sequence of changes in properties (of the environment
in general, its resources, or agents) that it causes, along with the preconditions that must
be satisfied for the action to be actually executed in the environment.

Note that our approach allows for quite flexible environment definitions. It is the
environment designer who decides which properties of the environment can be percep-
tible by agents, and which are observable by external users (as well as defining how
actions change the environment). Any properties associated with objects or with agents
themselves can potentially be specified as perceptible/observable properties.

4.2 Language Constructs in ELMS

The ELMS language uses an XML syntax, which can be somewhat cumbersome to be
used directly. However, recall that environment specifications are to be obtained from
a graphical interface, so users do not need to bother about the language syntax. Still,
environment specifications can be written directly in XML with a simple text editor,
or some other tool, if the user prefers to do so. The use of XML provides various
advantages, for example because of the wide range of XML tools currently available,
and it can be useful for the future development of visualisation mechanisms for ELMS-
based simulations, particularly if they are to be web-based.

An environment specification in ELMS can make use of constructs of nine main
types, and several other constructs that may appear within some of the main ones. There
is no special order for the constructs to appear in a specification. The main types of
ELMS constructs are listed below.

1. Defining agent bodies:

Agent Body: This construct defines a class of agent bodies for the agents that may
join a simulation with that environment. A specification of an agent-body class
contains its name, a list of attributes, a list of actions, and a list of perception
types. The list of attributes is defined as before; it characterises the observable
properties of this class of agent bodies, from the point of view of the environment
and other agents. It is then necessary to specify a list of names for the actions that
agents of this type are able to perform in the environment. The set of perceptions
is a list of the names of perception types (see below) that are available to agents
of this class (i.e., the information that will be accessible to the agent’s mind
at every reasoning cycle). Note that the same perception and action names can
appear in any number of agent-body definitions; that is, they can be used in all the
different classes of agent bodies that may execute that type of perception/action
(the same applies to reactions for resources). The code sample below defines
an agent-body class named worker robot which has as attributes an integer
and a boolean value. It is able to perform actions walk right, walk left,
load, and unload. The perceptions that are available for agents belonging to
the worker robot class are vision and audition.

ELMS: An Environment Description Language for Multi-agent Simulation 97

<AGENT_BODY NAME = "worker_robot">
<INTEGER NAME = "id"> "SELF" </INTEGER>
<BOOLEAN NAME = "functional"> "TRUE" </BOOLEAN>
<ACTIONS>

<ITEM NAME = "walk_right"/>
<ITEM NAME = "walk_left"/>
<ITEM NAME = "load"/>
<ITEM NAME = "unload"/>

</ACTIONS>
<PERCEPTIONS>

<ITEM NAME = "vision"/>
<ITEM NAME = "audition"/>

</PERCEPTIONS>
</AGENT_BODY>

Perception: This construct allows the specification of perception types to be listed
in agent-body specifications. A perception type definition is formed by a name,
an optional list of preconditions, and a list of properties that are perceptible.
The listed properties can be any of those associated with the definitions of
resources, agents, cells of the grid, or simulation control variables. If all the
preconditions (e.g., whether the agent is located on a specific position of the
grid) are all satisfied, then the values of those properties will be made available
to the agent’s reasoner as the result of its perception of the environment. Note
that perception can be based on the spatial position of the agent, but this is not
mandatory; any type of perception can be defined by the environment designer.

<PERCEPTION NAME = "vision">
<PRECONDITION>
<EQUAL>

<OPERAND>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "functional">

<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>

</OPERAND>
<OPERAND> "TRUE" </OPERAND>

</EQUAL>
</PRECONDITION>
<CELL_ATT ATTRIBUTE = "CONTENTS">

<X> +0 </X> <Y> +0 </Y>
</CELL_ATT>

</PERCEPTION>

The code sample above defines a perception calledvision. This perception has
as its precondition that the agent must have its functional attribute equals
to TRUE. If the precondition is satisfied, the agent will receive the information
about the contents of the cell on the grid where it is currently positioned.

Action: With this construct, the actions that may appear in agent-body definitions
are described. An action definition includes its name, an optional list of pa-
rameters, an optional list of preconditions, and a sequence of commands which
determine what changes in the environment the action causes. The list of param-
eters specifies the data that will be received from the agent for further guiding
the execution of that type of action. The possible commands for defining the
consequences of executing an action are assignments of values to attributes
(i.e., properties of agents, resources, etc.), and allocations or repositioning of
instances of agents or resources within the grid. Resources can also be instanti-
ated or removed by commands in an action. If the preconditions are all satisfied,
then all the commands in the sequence of commands will be executed, chang-
ing the environment accordingly. To avoid consistency problems, actions are

98 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

executed atomically. For this reason, they should be defined so as to follow
the concept of an atomic action (although this is again not mandatory); recall
that more complex courses of actions are meant to be part of agents’ internal
reasoning3.
<ACTION NAME = "walk_right">

<PARAMETER NAME="STEPS" TYPE="INTEGER"/>
<PRECONDITION>

<LESSTHAN>
<OPERAND> "STEPS" </OPERAND>
<OPERAND> 3 </OPERAND>

</LESSTHAN>
</PRECONDITION>
<MOVE>

<ELEMENT NAME = "SELFCLASS">
<INDEX>"SELF"</INDEX>

</ELEMENT>
<FROM>

<CELL>
<X>+0</X> <Y>+0</Y>

</CELL>
</FROM>
<TO>

<CELL>
<X>STEPS</X> <Y>+0</Y>

</CELL>
</TO>

</MOVE>
</ACTION>

In the example above, an action named walk right is defined. It has as
parameter an integer referred to as STEPS. The precondition defines that this
parameter must be lower than 3. As a result of the execution of this action, the
agent will walk, to the right, the number of steps specified by the parameter (i.e.,
the agent’s body location will be moved within the environment representation).

2. Defining the environment:
Grid Options: This is used for a grid definition, if the designer has chosen to have

one. The grid can be two or three dimensional, the parameters being the sizes
of the grid on the X, Y, and Z axes. Still within the grid definition, a list of cell
attributes can be given: the attributes defined here will be replicated for each cell
of the grid. Also as part of the cell definition, a list of reactions can be defined
for them4. The code below exemplifies a definition of a two-dimensional grid
that has twenty columns and twenty rows, where each cell has an integer that
represents its colour (which defaults to 0) and a boolean variable that keeps the
information about whether the cell is occupied (e.g., by an agent) or not. Each
of those cells can have the reactions named reaction1 and reaction2.

3 Since agents are constantly perceiving, reasoning, and acting, the actions they execute in the
environment should normally be atomic. That is, it is known before the next reasoning cycle
whether the previous action was successfully executed, and if it was, its perceptible effects
will be noticed by the agent when it does belief revision just before the next reasoning cycle.
Although it is possible to make alternative design choices where actions are not atomic, it seems
that simulations in particular should be more easily and appropriately engineered this way.

4 Although the list of reactions is the same for all cells, this does not imply they all have the same
behaviour at all times, as reactions can have preconditions on the specific state of the individual
cells.

ELMS: An Environment Description Language for Multi-agent Simulation 99

<DEFGRID SIZEX="20" SIZEY="20" SIZEZ="1">
<INTEGER NAME = "cellcolour"> 0 </INTEGER>
<BOOLEAN NAME = "ocuppied"> "FALSE" </BOOLEAN>
<REACTIONS>

<ITEM NAME = "reaction1"/>
<ITEM NAME = "reaction2"/>

</REACTIONS>
</DEFGRID>

Resources: This construct is used to define the objects in an environment (i.e.,
all the entities of the environment that are not pro-active). A definition of a
resource class includes the class name, a list of attributes, and a set of reactions.
The attributes are defined in the same way as for the cell attributes (i.e., by the
specification of its name, type, and initial value). The reactions that a class of
resources can have is given by a list of the names identifying those reactions
(see below how reactions are defined).

<RESOURCE NAME = "water">
<STRING NAME = "state" VALUE = "liquid"/>
<INTEGER NAME = "temperature"> 23 </INTEGER>
<INTEGER NAME = "quantity"> 10 </INTEGER>
<REACTIONS>
<ITEM NAME = "solidify"/>
<ITEM NAME = "melt"/>

</REACTIONS>
</RESOURCE>

The code sample above defines a resource class named water. It has a string
attribute that records its state value, and there are two integer values that rep-
resent its temperature and quantity. This resource can have the solidify and
melt reactions (i.e., the expected reactions to actions changing its temperature).

Reactions: This part of the specification is where the possible reactions of the ob-
jects in the environment are defined. For each type of reaction, its name, a list
of preconditions, and a sequence of commands is given. The commands are ex-
actly as described above for actions. All expressions in the list of preconditions
must be satisfied for the reaction to take place. Differently from actions, where
only one action (per agent) is performed, all reactions that satisfy their precon-
ditions will be executed “simultaneously” (i.e. in the same simulation cycle).
In the code sample below, the reaction melt is defined. As precondition, the
temperature attribute must greater than 273 (Kelvin scale) and the state
attribute must be equal to solid. This reaction results in changing the state
attribute toliquid. Note the use of the reserved keyword SELFCLASS, which
refers to the class of whatever resource type the reaction is associated with, and
is useful for programming and code reuse.
<REACTION NAME = "melt">

<PRECONDITION>
<GREATERTHAN>

<OPERAND>
<ELEMENT_ATT NAME = "water" ATTRIBUTE = "temperature">

<INDEX> "SELF" </INDEX>
</ELEMENT_ATT>

</OPERAND>
<OPERAND> 273 </OPERAND>

</GREATERTHAN>
<EQUAL>

<OPERAND>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "state">

<INDEX> "SELF" </INDEX>

100 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

</ELEMENT_ATT>
</OPERAND>
<OPERAND> "solid" </OPERAND>

</EQUAL>
</PRECONDITION>

<ASSIGN>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "state">

<INDEX> "SELF" </INDEX>
</ELEMENT_ATT>
<EXPRESSION> "liquid" </EXPRESSION>

</ASSIGN>
</REACTION>

3. Some operational aspects of a simulation are specified using the following con-
structs:

Observables: This is how the user defines which properties of the agents, resources,
and the environment itself will be sent to the MAS-SOC interface as the result
of a simulation cycle; that is, the users specify the particular properties of the
simulated “world” which they are interested in observing from the simulator
interface. The properties to be selected as observable can be any of those asso-
ciated with instances of resources and agents, cells of the grid, and simulation
control variables. The observable items are defined in the same way as the
perceptible items in a perception definition.

Initialisation: This part of the specification allows resources in the environment to
be instantiated and allocated to grid positions in the initial state of the simula-
tion (resources can also be created in the environment or allocated to the grid
dynamically during simulation). All commands in this section are only executed
before the start of the simulation. The initialisation is defined in the same way
as command sequences in action definitions.

Simulation Values: In this section of an ELMS definition, the values for the at-
tributes of instances of resources and agents that are currently part of a sim-
ulation can be defined. The environment controller process (see Sect. 5) can
generate a snapshot of a running simulation by filling in such values from those
contained in its data structures. With the constructs described above, the classes
of agents and resources are simply defined; instantiations can be made in the
initialisation section, or in this one for a simulation that is already running. Also
in this section, the position of instances of agents and resources on the grid
can be defined. The values for environment control variables can be defined by
assignment commands over predefined variable names (e.g., the current sim-
ulation step number). This feature allows the user to save the simulation state
for later execution, or to make on-the-fly changes in the environment (via the
interface or by changing the ELMS code manually) to induce various different
situations in a simulation. Such simulation snapshots may also be useful for
complex forms of visualisation of multi-agent simulations.

Next, we show some of the constructs that are used in ELMS to define commands,
expressions, and attributes.

Attribute Definition: The types of attributes supported by ELMS are: boolean, integer,
float, and string. Attributes are defined by a specific XML tag for each type and an

ELMS: An Environment Description Language for Multi-agent Simulation 101

initial value. The initial value can be a constant or an expression (except for string
expressions, which are currently not allowed).

Expressions: In ELMS, some mathematical, logical, and relational operators are avail-
able.The available relational operators areEQUAL,UNEQUAL,GREATERTHAN, and
LESSTHAN. For mathematical expressions, the following constructs are available:
ADD,SUBTRACT,MULTIPLY,DIVIDE,MOD,SUM (summatory), andPROD (prod-
uct). The available logical operators are: AND, OR, and NOT (negation). Operands
of relational operators can be another operation, a constant, and a cell, resource, or
agent attribute. It is also possible to use the commands RAND and RANDOM. The
former command generates a pseudo-random number between 0 and 1, while the
latter command has as parameters a minimum value (inclusive) and a maximum
value (exclusive), generating a pseudo-random integer in this range. These com-
mands can be used in all parts of the code, except within the “simulation values”
section (where they are not required).

Preconditions: The preconditions for actions, reactions, and perceptions are defined
through a sequence of logical operations. If a logical operator is not explicitly de-
fined, AND is assumed (as it is most commonly used). For example, the following
code:

<PRECONDITION>
<EQUAL>...</EQUAL>
<GREATERTHAN>...</GREATERTHAN>

</PRECONDITION>

has the same effect as:
<PRECONDITION>

<AND>
<OPERAND>

<EQUAL>...</EQUAL>
</OPERAND>
<OPERAND>

<GREATERTHAN>...</GREATERTHAN>
</OPERAND>

</AND>
</PRECONDITION>

Commands: Below, we use element to refer to both resources and agents. The com-
mands available in ELMS are: assignment (ASSIGN), allocation of an element on
the grid (IN), random allocation of an element on the grid (IN RAND), element re-
moval from the grid (OUT), changing the position of an element on the grid (MOVE),
instance creation (NEW), instance exclusion (DELETE).
The MOVE command has as parameters an element, its original position, and the
destination. Note that one element can occupy more than one position on the grid,
but elements have a reference point used for relative position calculation: the cell to
which it was first allocated. When using the MOVE command, the whole element is
moved by changing its reference point.

5 Running ELMS Environments

The simulation of the environment itself is done by a process that controls the access
and changes made to the data structure that represents the environment (in fact, only that

102 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

process can access the data structure); the process is called the environment controller.
The data structure that represents the environment is generated by the ELMS interpreter
for a specification in ELMS given as input. In each simulation cycle, the environment
controller sends to all agents currently taking part in the simulation the percepts to which
they have access (as specified in ELMS). Perception is transmitted in messages as a list
of ground logical facts. After sending perception, the process waits for the actions that
the agents have chosen to perform in that simulation cycle.

The execution of a synchronous simulation in ELMS, from the point of view of the
environment controller, follows the steps below:

1. execute the commands in the initialisation section before the start of the simulation;
2. check which percepts from the agent’s perception list are in fact available at that

time (check which perceivable properties satisfy the specified preconditions);
3. send the resulting percepts (those that satisfied the preconditions) to the agents;
4. wait until the chosen actions (to be performed in that cycle) have been received from

all agents5;
5. the order of the actions in the queue of all received actions is changed randomly to

allow each agent to have a chance of executing its action first;
6. check if the first action in the queue satisfies its precondition for execution;
7. execute the action, if the precondition was satisfied;
8. if not, send a message with “@fail” as content to the agent;
9. remove the action at the front of the queue;

10. if there are any actions left in the queue, go to step 6;
11. check and execute all reactions defined for resources in the environment which had

their preconditions satisfied;
12. send the set of properties defined as “observables” to the interface or to an output

file previously specified;
13. if the step counter has not yet reached the maximum value defined by the user, go

to the step 2.

Note that this corresponds to the (default) synchronous simulation mode. An asyn-
chronous mode is also available.

For the communication between the agents, the SACI (Simple Agent Communi-
caiton Infrastructure) [8] toolkit is used. It supports KQML-based communication and
provides an infrastructure for managing distributed agents. All agents participating in
a simulation are registered to a SACI society. Through it, every member of the society
can communicate with other members by simply sending messages addressed with that
member’s name in the society (regardless of the host where the agent interpreter is run-
ning). This way, it is possible for any SACI-based agent to interact within a simulation,
so that, for example, we can make available an interface for human “agents” to interact
within a MAS-SOC simulated society (although this is not currently one of the main
goals of the MAS-SOC project). This feature (of open SACI societies) can also be very
useful for simulation debugging and analysis (e.g., “observer” agents can be introduced
to monitor aspects of a simulation).

5 Agents send a message with “true” as its content if they have chosen not to execute an action
in that cycle.

ELMS: An Environment Description Language for Multi-agent Simulation 103

SACI is available as free software at http://www.lti.pcs.usp.br/saci/.
The ELMS interpreter too will be made available as free software in the near future.

6 Conclusion

This paper introduced the ELMS language, used for the specification of the characteris-
tics of agent “bodies” and the environment to be shared by agents in a multi-agent social
simulation.Although the ELMS interpreter is tailored for social simulation implemented
according to the MAS-SOC approach, it could be useful for other symbolic approaches
as well. The MAS-SOC approach consists of a distinct combination of multi-agent tech-
niques that we consider as the most adequate for the construction of multi-agent based
social simulations. We believe that MAS-SOC allows for quite flexible definitions of
multi-agent social simulations, taking into considerations not only cognitive agents but
also the environment shared by them.

As future work, there are several improvements to the platform that we plan to carry
out. In particular, we plan to concentrate on higher-level aspects of agent-based simu-
lations which are particularly important for social simulation, such as the specification
of social structures within agent societies, as well as using the ideas of exchange values
from [13] to support social interactions. In the long term, we aim at investigating the
necessary mechanisms for reconciling cognition and emergence following the ideas of
[9], and incorporating such mechanisms into MAS-SOC, thus allowing it to be used
in investigations of the micro-macro link problem. We are currently considering the
implementation of various social simulation applications.

References

1. Okuyama, F.Y.: Descrição e geração de ambientes para simulações com sistemas multiagente.
Dissertação de mestrado, PPGC/UFRGS, Porto Alegre, RS (2003). In Portuguese.

2. Bordini, R.H., Okuyama, F.Y., de Oliveira, D., Drehmer, G., Krafta, R.C.: The MAS-SOC
approach to multi-agent based simulation. In Lindemann, G., Moldt, D., Paolucci, M., eds.:
Proceedings of the First International Workshop on Regulated Agent-Based Social Systems:
Theories and Applications (RASTA’02), 16 July, 2002, Bologna, Italy (held with AAMAS02)
— Revised Selected and Invited Papers. Number 2934 in the LNAI Series, Berlin, Springer-
Verlag (2004), 70–91.

3. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In
Van de Velde, W., Perram, J., eds.: Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven,
The Netherlands. Number 1038 in the LNAI Series, London, Springer-Verlag (1996), 42–55.

4. Bordini, R.H., Hübner, J.F., et al.: Jason: A Java-based agentSpeak interpreter used
with saci for multi-agent distribution over the net. Manual, first release edn. (2004)
http://jason.sourceforge.net/.

5. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-AgentSpeak: Cooperation in
AgentSpeak through plan exchange. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe,
M., eds.: Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-2004), NewYork, NY, 19–23 July, NewYork, NY, ACM
Press (2004), 698–705.

104 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

6. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the operational semantics of a BDI agent-
oriented programming language for introducing speech-act based communication. In Leite,
J., Omicini, A., Sterling, L., Torroni, P., eds.: Declarative Agent Languages and Technologies,
Proceedings of the First International Workshop (DALT-03), held with AAMAS-03, 15 July,
2003, Melbourne, Australia (Revised Selected and Invited Papers). Number 2990 in the LNAI
Series, Berlin, Springer-Verlag (2004), 135–154.

7. d’Inverno, M., Luck, M.: EngineeringAgentSpeak(L):A formal computational model. Journal
of Logic and Computation 8 (1998), 1–27.

8. Hübner, J.F.: Um Modelo de Reorganização de Sistemas Multiagentes. PhD thesis, Univer-
sidade de São Paulo, Escola Politécnica (2003).

9. Castelfranchi, C.: The theory of social functions: Challenges for computational social science
and multi-agent learning. Cognitive Systems Research 2 (2001), 5–38.

10. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995).
11. Wooldridge, M.: Intelligent agents. In Weiß, G., ed.: Multiagent Systems—A Modern Ap-

proach to Distributed Artificial Intelligence. MIT Press, Cambridge, MA (1999), 27–77.
12. Russel, S., Norvig, P.: Artificial Intelligence — A Modern Approach. Prentice-Hall, Engle-

wood Cliffs, NJ (1995).
13. Rodrigues, M.R., da Rocha Costa, A.C., Bordini, R.H.: A system of exchange values to

support social interactions in artificial societies. In Rosenschein, J.S., Sandholm, T., Michael,
W.,Yokoo, M., eds.: Proceedings of the Second International Joint Conference onAutonomous
Agents and Multi-Agent Systems (AAMAS-2003), Melbourne, Australia, 14–18 July, New
York, NY, ACM Press (2003). 81–88.

14. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifiable multi-agent programs. In
Dastani, M., Dix, J., El Fallah-Seghrouchni, A., eds.: Programming Multi-Agent Systems,
Proceedings of the First International Workshop (ProMAS-03), held with AAMAS-03, 15
July, 2003, Melbourne, Australia (Selected Revised and Invited Papers). Number 3067 in the
LNAI Series, Berlin, Springer-Verlag (2004), 72–89.

Appendix A Example of an ELMS Specification

We provide below a very simple example so as to illustrate the use of the ELMS language
for specifying an environment.A robot (simulated by anAgentSpeak(L) agent) must find
garbage in a territory that is modelled as a 10 × 10 grid. When a piece of garbage is
found, the robot collects it and takes it to an incinerator located at the centre of the
territory that is to be kept clean. In the environment used in simulations carried out to
observe the behaviour of the AgentSpeak(L) agent, garbage randomly “appears” on the
grid. We have included some redundant attributes in the example just so that we could
show how to use various ELMS constructs. Due to the lack of space, only a few excerpts
of the code are explained with accompanying text.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ENVIRONMENT SYSTEM "elms.dtd">
<ENVIRONMENT NAME = "TERRITORY">

<!-- AGENTS SECTION -->

<AGENT_BODY NAME="robot">
<BOOLEAN NAME = "loaded"> "FALSE" </BOOLEAN>
<PERCEPTIONS>

<ITEM NAME = "self_info"/>

ELMS: An Environment Description Language for Multi-agent Simulation 105

<ITEM NAME = "cur_position"/>
</PERCEPTIONS>
<ACTIONS>

<ITEM NAME = "load"/>
<ITEM NAME = "unload"/>
<ITEM NAME = "move_north"/>
<ITEM NAME = "move_south"/>
<ITEM NAME = "move_east"/>
<ITEM NAME = "move_west"/>

</ACTIONS>
</AGENT_BODY>

This excerpt defines a class of agent bodies named robot. This class has as attribute
a boolean value named loaded which is true whenever the robot is carrying a piece
of garbage. The robot is able to perform two types of perceptions: self info and
cur position, which will be defined in the perception section below. Also, it is able
to perform six different actions, as listed above and defined later in the action section.

<!-- PERCEPTIONS SECTION -->

<PERCEPTION NAME="cur_position">
<CELL_ATT ELEMENT = "garbage" ATTRIBUTE ="size" > // SIZE OF THE GARBAGE

<X> +0 </X> <Y> +0 </Y> // PRESENT IN CURRENT CELL
</CELL_ATT>
<CELL_ATT ATTRIBUTE = "colour">

<X> +0 </X> <Y> +0 </Y>
</CELL_ATT>

</PERCEPTION>

This perception allows the agent to have an explicit representation of information
about the cell where it is currently positioned: the size of the piece of garbage in that cell
(if there is any) and the cell’s colour, which is represented by an integer. No information
about neighbouring cells is perceived.

<PERCEPTION NAME="self_info">
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">

<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>

</PERCEPTION>

<!-- ACTIONS SECTION -->

<ACTION NAME="move_east">
<MOVE>

<ELEMENT NAME = "SELFCLASS">
<INDEX>"SELF"</INDEX>

</ELEMENT>
<FROM>

<CELL>
<X>+0</X>
<Y>+0</Y>

</CELL>
</FROM>
<TO>

<CELL>
<X>+1</X>
<Y>+0</Y>

</CELL>
</TO>

</MOVE>

106 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

</ACTION>

<ACTION NAME="move_north"> // SUMMARISED
<ACTION NAME="move_south">
<ACTION NAME="move_west">

<ACTION NAME="load">
<PARAMETER NAME="G1" TYPE="INTEGER" />
<PRECONDITION>

<UNEQUAL> // FAIL CHANCE = 1/20
<OPERAND>

<RANDOM MIN="0" MAX="20"/>
</OPERAND>
<OPERAND> "10" </OPERAND>

</UNEQUAL>
</PRECONDITION>
<OUT>

<ELEMENT NAME = "garbage">
<INDEX> "G1" </INDEX>

</ELEMENT>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</OUT>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">
<INDEX>"SELF"</INDEX>

</ELEMENT_ATT>
<EXPRESSION> "TRUE" </EXPRESSION>

</ASSIGN>
</ACTION>

The action above removes the garbage from the cell and changes the loaded at-
tribute of the agent. This action can fail a random number of times, as it has as pre-
condition that a random number between 0 to 20 must not be equals to 10 or else the
action will fail. This nondeterminism models possible failures of the robot’s grabbing
mechanism. The action has as parameter, referred as G1, the index of the garbage that
will be loaded.

<ACTION NAME="unload">
<PARAMETER NAME="G1" TYPE="INTEGER" />
<IN>

<ELEMENT NAME = "garbage">
<INDEX>"G1"</INDEX>

</ELEMENT>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</IN>
<ASSIGN>

<ELEMENT_ATT NAME = "incinerator" ATTRIBUTE = "empty">
<INDEX>

<CELL_ATT ELEMENT = "incinerator" ATTRIBUTE ="id" >
<X>+0</X>
<Y>+0</Y>

</CELL_ATT>
</INDEX>

</ELEMENT_ATT>
<EXPRESSION> "TRUE" </EXPRESSION>

</ASSIGN>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">
<INDEX>"SELF"</INDEX>

ELMS: An Environment Description Language for Multi-agent Simulation 107

</ELEMENT_ATT>
<EXPRESSION> "FALSE" </EXPRESSION>

</ASSIGN>
</ACTION>

<!-- GRID DEFINITIONS SECTION -->

<DEFGRID SIZEX="10" SIZEY="10">
<INTEGER NAME = "colour">

<RANDOM MIN="0" MAX="16"/>
</INTEGER>
<REACTIONS>

<ITEM NAME ="sprout_trash"/>
</REACTIONS>

</DEFGRID>

<!-- RESOURCES SECTION -->

<RESOURCE NAME="garbage">
<INTEGER NAME="size"> 5 </INTEGER>

</RESOURCE>

<RESOURCE NAME="incinerator">
<BOOLEAN NAME="empty"> "TRUE" </BOOLEAN>
<INTEGER NAME="id"> "SELF" </INTEGER>
<REACTIONS>

<ITEM NAME ="burn"/>
</REACTIONS>

</RESOURCE>

<!-- REACTIONS SECTION -->

<REACTION NAME="burn">
<PRECONDITION>
<EQUAL>

<OPERAND>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "empty">

<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>

</OPERAND>
<OPERAND> "FALSE" </OPERAND>

</EQUAL>
</PRECONDITION>
<DELETE NAME = "garbage">

<INDEX>
<CELL_ATT NAME = "garbage" ATTRIBUTE = "id">

<X>+0</X>
<Y>+0</Y>

</CELL_ATT>
</INDEX>

</DELETE>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "empty">
<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>
<EXPRESSION>

"TRUE"
</EXPRESSION>

</ASSIGN>
</REACTION>

<REACTION NAME="sprout_trash">
<PRECONDITION>

108 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

<EQUAL>
<OPERAND>

<RANDOM MIN="0" MAX="100"/>
</OPERAND>
<OPERAND> 10 </OPERAND>

</EQUAL>
</PRECONDITION>
<NEW NAME = "incinerator">

<N>1</N>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</NEW>

</REACTION>

<!-- OBSERVABLES SECTION -->

<OBSERVABLE>
<CELL_ATT ATTRIBUTE = "colour">

<X> "ALL"</X>
<Y> "ALL" </Y>

</CELL_ATT>
<CELL_ATT ATTRIBUTE = "CONTENTS">

<X> "ALL"</X>
<Y> "ALL" </Y>

</CELL_ATT>
</OBSERVABLE>

<!-- INITIALIZATION SECTION -->

<INITIALIZATION>
<NEW NAME = "incinerator">

<N>1</N> //ONE INSTANCE
<CELL>

<X>4</X>
<Y>4</Y>

</CELL>
</NEW>

</INITIALIZATION>
</ENVIRONMENT>

The simple AgentSpeak(L) code that could be used for the robot’s reasoning has not
been included, as the focus here in on modelling environments, but such code can be
found in [14] and is one of the examples distributed with Jason [4].

MIC∗: A Deployment Environment
for Autonomous Agents

Abdelkader Gouäıch, Fabien Michel, and Yves Guiraud

LIRMM, CNRS,
161 rue Ada,

34392 Montpellier Cedex 5, France
{gouaich, fmichel, yguiraud}@lirmm.fr

Abstract. This paper presents the MIC∗ model of autonomous agents
deployment environment. A practical social software engineering frame-
work based on AGR is also presented to show how MIC∗ is used to
develop MAS applications.

1 Introduction

Multi-agent systems (MASs) are composed by autonomous agents (AAs) that
evolve and interact in order to achieve their goals. What is implicit in this
definition of MASs is where these AAs live. This containing place of AAs is
identified by the generic term of environment. As Odell and colleagues have
pointed out in [1], the environment defines the properties of the world in which
an agent can and does function.

However, there are different concerns for the environment regarding the level
of abstraction at which the attention is focused [2].

At the conceptual level, the environment defines the model of the AAs’ world
and the practical means by which they perceive and act on it to achieve their
goals. At the implementation level, agents are necessarily embedded in a software
system that offers them some computing facilities.

As Zambonelli and Parunak have noticed in [3], traditional software engineer-
ing approaches usually do not consider the environment at the implementation
level as a primary abstraction. In the scope of this paper, the software system
containing the AAs and defining their interactions is identified as the deployment
environment (DE).

This paper relies on the idea that understanding and explicitly representing
the DE is a crucial issue for MAS engineering. Moreover, this paper argues that
the DE plays a fundamental role in order to guarantee the autonomy property.
In fact, we will see that the internal integrity of AAs is an objective criterion
that guarantees the autonomy at the implementation level.

As an example of DE, this paper presents MIC∗ (Movement, Interaction,
Computation). MIC∗ is an algebraic model that is independent from both the
conceptual and implementation models of the AAs. Hence, AAs are considered

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 109–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 A. Gouäıch, F. Michel, and Y. Guiraud

as black-boxes that sense and act through the DE by sending and receiving inter-
action objects (IOs). The interaction between the AAs is defined contextually in
interaction spaces (ISs). The whole dynamics of the DE is seen as the composition
of three kinds of functions: the movement, the interaction and the computation.
MIC∗ is a DE which is defined at the implementation level. Consequently, MIC∗

has not to be confused with the modeling of the AAs’ application-dependent
world. For instance, agent-based simulations which have been developed using
MIC∗ consider the situated environment as a particular active entity operating
on the DE [4]. For instance, this entity is in charge of calculating the evapo-
rating/aggregating/diffusing of pheromone, giving an operational semantics of
simultaneous actions or environmental variables such as temperature and so on.

Finally, as a case study, this paper describes the implementation of a social
framework which relies on traditional organizational concepts inspired by the
AGR model [5].

The rest of the paper is organized as follows: Sect. 2 presents the backgrounds
of the work; Sect. 3 discusses the autonomy property and induces the require-
ments that make necessary the explicit representation of the DE within MASs
at the implementation level; Sect. 4 presents the MIC∗ DE; Sect. 5 shows how
a social framework is built upon MIC∗; Sect. 6 presents an application devel-
oped using this social framework; and finally Sect. 7 concludes and gives some
perspectives.

2 Backgrounds

2.1 Multi-agent Systems

Few works tackle the general study of DEs. In this perspective, a lot of agent
platforms have been developed and are available for the implementation of MASs
[2]. However, these DEs are passive within the MAS and are often considered
as basic middlewares used to (i) access computer resources and (ii) delivering
messages to agents on the basis of predefined and fixed routing mechanisms.
MIC∗ does not settle the interaction and routing mechanisms, it gives simply
general requirements that should be instantiated for each particular MAS.

2.2 Coordination Media

The coordination medium can be considered as a persistent place where the
interaction between the coordinating entities takes place. Linda [6] is an example
of such a coordination medium where the entities coordinate their activities by
writing and retrieving tuples. A tuple is a set of typed fields and values. Linda has
inspired many other tuple-based coordination media such as Lime [7], Tuscon
[8] and MARS [9]. The interesting feature of coordination media is the property
of generative interaction [10]. This means that the interaction between entities
is uncoupled in space and time. MIC∗ tries to offer the same property for the
interaction among AAs. However, unlike Linda-like approaches, MIC∗ gives an
explicit structure of the medium and defines its dynamics according to the MAS
paradigm.

MIC∗: A Deployment Environment for Autonomous Agents 111

3 Why an Explicit Model of Deployment Environment
Is Needed?

3.1 Implementing Autonomous Agents

This section uses Wooldridge and Jennings definition of an agent [11]:

“Perhaps the most general way in which the term agent is used is
to denote a hardware or (more usually) software-based computer system
that enjoys the following properties:
– autonomy: agents operate without the direct intervention of humans

or others, and have some kind of control over their actions and in-
ternal state [12];

– social ability: agents interact with other agents (and possibly humans)
via some kind of agent-communication language [13];

– reactivity: agents perceive their environment, (which may be the phys-
ical world, a user via a graphical user interface, a collection of other
agents, the INTERNET, or perhaps all of these combined), and re-
spond in a timely fashion to changes that occur in it;

– pro-activeness: agents do not simply act in response to their envi-
ronment, they are able to exhibit goal-directed behavior by taking the
initiative.”

This definition specifies some features that a physical or software entity must
fulfill to be considered as an AA. Still, this definition does not specify how to
implement AAs. Consequently, developers may have their own interpretation of
the presented features. In [14], Gouäich identifies two main interpretations of
autonomy in the MAS literature: autonomy as self-governance and autonomy as
independence.

3.2 Autonomy as Self-governance

This interpretation is related to the definition proposed by Steels in [15]. Steels
considers the autonomy feature from a biological point of view:

“It starts from the idea that agents are self sustaining systems which
perform a function for others and thus get the resources to maintain
themselves. But because they have to worry about their own survival they
need to be autonomous, both in the sense of self-governing and of having
their own motivations.”

The concept of autonomy is thus regarded as a consequence of a survival instinct.
For a software agent, it is a question of achieving its own goals while ensuring
its functional requirements. Notably, an agent must be able to adapt itself with
respect to a modification of the external environment. Castelfranchi [12] shares
also this vision and defines an AA as a pro-active entity which has the ability to
produce its own laws and to follow them.

112 A. Gouäıch, F. Michel, and Y. Guiraud

3.3 Autonomy as Independence

This interpretation relates the autonomy feature to the social context of an AA.
The Social Dependence Network (SDN) has been introduced by Sichman and
colleagues in [16] to allow AAs to reason about their artificial society. Within
SDN, the autonomy concept is used to evaluate the level of the social dependence.
Three forms of autonomy are distinguished. An agent is a-autonomous for a given
goal according to a set of plans, if there is a plan in this set that achieves the goal
and every action in each plan belongs to its capabilities. An agent is considered
as r-autonomous for a given goal according to a set of plans, if there is a plan
in this set that achieves the goal, and every resource in each plan belongs to
its resources. Finally, an agent is s-autonomous when it is both a-autonomous
and r-autonomous. According to this definition, an agent is autonomous for a
particular goal if it does not depend for resources or actions on another agent.

3.4 Internal Integrity: An Objective Criterion for Autonomy

Sichman and colleagues define autonomy as being independent on actions and
resources from other agents. On the other hand, [12, 15, 17] define agent’s auton-
omy as a behavioral characteristic. From a software engineering perspective, the
latter interpretation is more useful and generic since it does not imply to study
the MAS social structure. The autonomy is only related to individual charac-
teristics. However, it still remains a subjective point of view because it relies
on how the behavior of an agent is evaluated. So, as Weiss and colleagues have
pointed out in [18], objective implementation criteria are necessary to define the
autonomy of a software agent. We propose the internal integrity as an objective
criterion to implement AAs [14].

The internal integrity is a programming constraint that considers an AA as
a bounded system which internal dynamics and structure are neither control-
lable nor observable directly by an external entity. In fact, if the AA’s software
structure is accessed or modified by another entity, the decisional process and
behaviors may be altered. Since the decisional process of an AA has to be en-
tirely determined only by its own perception and behaviors, the internal integrity
becomes a sine qua none condition to implement AAs.

3.5 Agent Deployment Environment: Ensuring Internal Integrity

The internal integrity criterion also raises some issues with respect to the im-
plementation of MASs: on one hand, the internal integrity has to be taken into
account to guarantee the autonomy; on the other hand, the AAs are interacting
entities that need to act and modify the perceptions of other agents. Since these
perceptions are included within the boundaries of the AAs, this contradicts the
internal integrity statement. In other words, the problem is to enable the interac-
tion between AAs which boundaries do not intersect. To avoid this paradox, the
DE needs to be a non-agent entity that manages and carries out the interactions.

The next section presents MIC∗ as an example of a DE that guarantees the
internal integrity of the AAs while enabling their interactions.

MIC∗: A Deployment Environment for Autonomous Agents 113

4 MIC* Algebraic Model

4.1 Introduction to the MIC∗ Model

In order to fulfill the presented requirements on autonomy, the AAs have to be
considered as bounded black-boxes. Thus, no assumption is made on their in-
ternal structure. Consequently, the DE only considers the observable processes
such as the interaction. The interaction process is independent from the AAs
conceptual and implementation models. In fact, heterogeneous AAs are able to
interact at least if they agree on a common interaction language or ontology.
Within MASs, the word ’interaction’ is misused and often refers to a commu-
nication process. Communication is defined as exchanging information between
several locations; while interaction goes further and assumes that the exchanged
information modifies the state of the communicating entities. To be exchanged,
information is usually encoded using explicit carriers. Within MIC∗ these carriers
are reified as interaction objects (IOs).

For instance, a researcher’s ideas can be encoded as words and sentences in an
explicit scientific paper which represents the explicit information carrier. Other
human agents are able to read this IO and, depending on their competences, to
decode the contained information.

Once the paper has been written and published, the emitting agent does not
have control on the ongoing communication processes that occur.

For instance, Socrates is still in a communication process with other human
agents centuries after his death. Having this intuition about IOs, it would be
interesting to look further in their structure. The first abstraction is to define
an empty IO that carries no information. For instance, an empty paper is an IO
that does not carry any information but just meta-information: it is a paper and
it is empty.

The IOs can also be aggregated. For instance, the proceedings of the con-
ference is an IO represented as an aggregation of more elementary IOs. Con-
sequently, IOs naturally have a monoid structure (O, +) with the composition
law + and identity element 0. In an aggregation, we do not want to consider
the order as an additional information. So, no matter the order of the IOs in
an aggregation, one has to be able to interpret them similarly. This makes the
composition operator + commutative.

Now let us consider a situation where a poor-quality paper is rejected by the
program committee of a conference and accepted by a national workshop pro-
gram committee. This IO never reached the perceptions of other agents in the
first case and interacts with them in the second case. So, the interaction process
are contextually defined. This introduces the concept of interaction spaces (ISs).
Hence, ISs define a local context for interactions among IOs. Notice that the in-
teraction processes within MIC∗ only involve IOs and is completely independent
from the AAs.

The AAs have coordinates, in terms of IOs, in all ISs. When an agent is not
’present’ in a certain IS, its representation is equal to the empty IO 0; when an
agent is present in a certain IS its representation differs from 0.

114 A. Gouäıch, F. Michel, and Y. Guiraud

The (logical) mobility of an AA is defined as the movement of its IOs among
ISs. In order to easily define this notion of mobility, we introduce negative IOs.
Hence, an AA moves outside an IS when its representation is reduced to 0. This
can be expressed as x+(−x) = 0. So, negative IOs are defined as being IOs that
reduce other IOs under the composition law +. So, the IOs structure is no more
a commutative monoid but a commutative group (O, +). The group structure
is also used in order to define the composition of several MIC∗ DEs. Thanks
to this on-the-fly composition property, MASs for open and ubiquitous contexts
are easily modeled and implemented [19].

The MIC∗ structure T = O(A×S)×O(A×S) is composed by two matrices that
are described as follows:

1. The outbox matrix: the rows of this matrix represent agents i ∈ A and the
columns represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O is a
representation of the agent i in the IS j. This is the only way for an agent
to exist and operate in the MAS. So, the elements of this matrix model
the means that enable an agent to perceive and influence the universe in
a particular IS. Notice that the means used to perceive the universe are
distinguished from the result of the perception. The perception results are
placed in the inbox matrix. When o(i,j) = 0, the agent i neither influences
nor perceives the universe in the IS j: agent i does not exist in IS j.

2. The inbox matrix: the rows of this matrix represent agents i ∈ A and the
columns represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O
represents the result of the perceptions of the agent i in the IS j.

Each element, or term, T of T is represented as:

T =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎣

[o1]a︸︷︷︸
(C)
...

⎤
⎥⎦

s︸ ︷︷ ︸
(B)

· · ·

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(A)

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎣

[i1]a︸︷︷︸
(G)
...

⎤
⎥⎦

s︸ ︷︷ ︸
(F)

· · ·

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(E)

(A) : the outbox matrix ; (B) : the IS ’s’ ; (C) : the outbox of agent ’a’ ; (E) :
the inbox matrix ; (F) : IS ’s’ ; (G) : the inbox of agent ’a’.

4.2 MIC∗ Dynamics

An element T ∈ T is an instantaneous snapshot of the DE state. Within all
potentially functions defined from T to T , MIC∗ considers three classes which
have special semantics for MASs:

Interaction (φ): From an external point of view, two AAs are considered as
interacting when the perceptions of an agent are influenced by the emissions
of another. Consequently, interaction functions modifies the perception re-
sults of an agent (defined in the inbox) according to its perception means

MIC∗: A Deployment Environment for Autonomous Agents 115

and others influences (both defined in the outbox) within a defined IS. The
set of all interaction functions is represented as φ.

Movement (μ): The mobility of an agent is defined as the mobility of its IOs
among different ISs. During a movement no IO is created nor lost. In fact,
this is an interesting feature to prevent incoherent duplications by guaran-
teeing that an AA actually disappears from its original IS and appears in its
destination IS. The set of all movement evolutions is represented by μ.

Computation (γ): The computation is an internal process of AAs. The only
way to observe that an AA has conducted a computation is when it changes
autonomously its outboxes within ISs. To avoid confusion between compu-
tation and movement, after a computation, AAs conserve their presence. In
other words, an agent is not allowed to appear (respectively to disappear)
suddenly in an IS when it was not present (respectively present) before the
computation. Besides, agents are rational entities that change their emis-
sions according to their perceptions. So, an agent consumes its perceptions
in order to make a computation. This is expressed in MIC∗ by resetting the
inbox of the computing agent to 0. The set of all computation evolutions is
represented by γ.

The core idea is that (i) the DE dynamics is discrete and (ii) any state of
the DE is reached from the initial state by a sequence of functions that may be
of three classes: (M)ovement, (I)nteraction, and (C)omputation (MIC∗).

4.3 Building MAS Deployment Environment with MIC∗:

The formal concepts presented above has been implemented as software struc-
tures offering a development library for the designers of DEs. To complete the
design and implementation of a DE, the designer has to provide the followings:

– IOs type description: the IOs have been used: (i) to encode and carry in-
formation, (ii) to define the perceptions of AAs in ISs, (iii) to define the
influences of AAs in ISs, and finally (iv) to define the movement of AAs
among ISs. A typing system of IOs has been introduced to describe the
fields contained in an IO and to provide a semantics. The types of IOs have
also been used to improve the performances of MIC∗, especially when using
the dynamics operators. Hence, the operators, which are typed functions,
are executed only when the matching IOs are present within the IS. The DE
designer has to provide the description of the different IO types used within
the MAS and their possible hierarchical relationships. The introduced type
system supports multiple inheritance.

– Interaction spaces: the MIC∗ library offers a default IS where AAs are ini-
tially located. The designer has to define its own application specific ISs.

Dynamics Operators. The dynamics of MIC∗ is realized by the following
operators that are defined for ISs:

116 A. Gouäıch, F. Michel, and Y. Guiraud

– Interaction operators: a couple of IOs is passed to the interaction opera-
tor, namely the sensor and effector. The interaction operator returns the
interaction result. An IS may contain zero or more interaction operators.
Consequently, the interaction is defined between the IOs and not between
the AAs. The AAs have to set their outboxes to the correct sensors in order
to perceive the effectors of other AAs according to the defined interaction
operators. The type information is used to match interaction operators with
corresponding IOs present in the IS.

– Movement operators: the movement among the ISs is decomposed in two
operators which are combined. In fact, each IS defines a set of movement out
operators that specify which IOs are allowed to get outside the IS; and a set
of movement in operators that defines which IOs are allowed to enter the
IS. A path is created between two ISs when the types of their corresponding
movement out and in operators match. If a path is found among two ISs,
the IOs may move from the source to the destination IS.

5 Building a Social Framework Upon MIC∗

MIC∗ only offers a generic and low level abstraction of a DE. To build real
world applications, one has to provide a higher level engineering framework.
This section presents a social framework. The idea is that MAS designers only
deal with social concepts which are automatically translated to MIC∗ concepts.

5.1 Presentation of the Social Framework

The presented social framework is deeply inspired by the AGR model [5]. The
MadKit [20] platform already implements the AGR model; here we explore an-
other implementation using only MIC∗ primitives.

The social abstractions presented by AGR are briefly described as follows:

– (A)gent: an agent may play one or several roles and may be member of one
or several groups;

– (G)roup: a group is a collection of roles and consequently a collection of
agents that play these roles. The interaction among the agents can occur
only when they are located within the same group;

– (R)ole: a role is an abstraction that represents a function or a service within
the society; agents playing the role fulfill the desired service.

At this stage, let us sketch a preliminary mapping between AGR and MIC∗.
As shown in Fig. 1, the group concept may be modeled as an IS: the IS concept
may be seen as a logical location where a collection of agents interact. Besides,
the agents may move across groups; this is similar to moving across ISs. The
agent concept of AGR naturally corresponds to MIC∗ AAs. Still, there is not a
one to one mapping between these concepts (see Sect. 5.2). The role concept is
considered as an IO within MIC∗. In fact, when an agent plays a certain role,

MIC∗: A Deployment Environment for Autonomous Agents 117

Fig. 1. Mapping between AGR concepts and MIC∗ concepts

it publishes an IO that describes itself as playing this role. Consequently, other
agents can identify its social function and interact with it. The implementation
of the AGR model using MIC∗ is explained in more detail in Table 1.

Two interaction schemes are considered for the social framework:

1. The role-level interaction schema: messages are delivered to agents only by
knowing their roles. This mechanism allows implementing one-to-many com-
munications and the discovery of agents’ identities by knowing only their
roles.

2. The agent-level interaction schema: messages are delivered to agents by
knowing their exact identity. This mechanism implements one-to-one com-
munications.

5.2 Implementation of the Social Framework

Interaction Objects. Fig. 2 presents the types of IOs used in the social frame-
work:

– Message: the Message type represents IOs used to exchange information
encoded as a content. This is the base-type of all other interaction related
types; it contains a single field, content, that represents the exchanged in-
formation.

Fig. 2. Type hierarchy of IOs used in the social framework

118 A. Gouäıch, F. Michel, and Y. Guiraud

– SocialMessage: the SocialMessage type represents exchanged messages for
the role-level interaction schema. The fields of this type are: sender-role
that represents the role of the sender and receiver-role that represents the
role of the receiver. This type inherits the content field from the Message
type.

– AgentMessage: the AgentMessage type represents exchanged messages at
the agent-level interaction schema. This type fields are: sender-agent-id
that represents the identity of the sender; receiver-agent-id that repre-
sents the identity of the receiver; sender-role that represents the role of
the sender; receiver-role that represents the role of the receiver. This type
inherits the content field from the Message type.

– SocialRole: the SocialRole type represents roles which are played by the
AAs. This type defines only a single field role-id that represents the unique
identifier of the role.

– AgentIdentifier: the AgentIdentifier type represents the identity of an
agent. In fact, since AAs do not have access to the structure of others, they
have to explicitly publish their identity. This type defines only a single field
agent-id that represents the unique identifier of the agent; it also inherits
the role-id field from the SocialRole type.

– Authorisation: the Authorisation type is used to control group access
using movement operators. An agent is allowed to enter an IS by presenting
the correct Authorisation instance. The Authorisation contains the name
of the played role, namely the played-role field; and the certificate field
that represents a signature confirming that the agent is allowed to play this
role.

Interaction Operators. Two interaction operators are defined in order to
model the interaction schemes:

– Role-level interaction operator: this operator is defined among SocialRole
and SocialMessage. A SocialRole interacts with a SocialMessage only
and only if the receiver role of the SocialMessage is the same as the role-id
field of the SocialRole. This is expressed algorithmically as:

1: function RoleLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the SocialRole type
Require: effector is instance of the SocialMessage type

2: if sensor[’role-id’] == effector[’receiver-role’] then
3: return effector
4: else
5: return 0 	 No interaction.
6: end if
7: end function

– Agent-level Interaction Operator: the agent-level interaction is defined be-
tween AgentIdentifier and AgentMessage. An AgentIdentifier interacts

MIC∗: A Deployment Environment for Autonomous Agents 119

with an AgentMessage only and only if the id of the receiver is the same as
the id of the agent. This is expressed algorithmically as follows:

1: function AgentLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the AgentIdentifier type
Require: effector is instance of the AgentMessage type

2: if sensor[’agent-id’] == effector[’receiver-agent-id’] then
3: return effector
4: else
5: return 0 	 No interaction.
6: end if
7: end function

Movement Operators. The groups are modeled as ISs. Consequently, each
IS is associated with a set of roles. To enter the IS, an agent has to play a role
that belongs to this set. To realize these movements, the group-entrance operator
allows agents to enter inside an IS. The agents have to present an Authorisation
that describes the played role. On the other hand, the group-leaving operator
allows agents to leave the IS.

Interaction Spaces. Besides the default IS defined by MIC∗, each group is
represented by an extension of MIC∗ IS, namely the social interaction space.
Each social IS is defined with a set of authorized roles; the role-level and agent-
level interaction operators; and the group-entrance and group-leaving operators.

The Autonomous Agents. Within MIC∗, the AAs may have simultaneous
activities. For instance, a single AA can sense its surrounding environment and
affect it simultaneously. To realize this simultaneity, several MIC∗ agent entries
are used. For instance, Fig. 3 shows this schema where two MIC∗ agent entries
are associated to a single AA: the sensor entry and effector entry.

From the AA perspective, the sensor entry is dedicated for sensing the uni-
verse. Consequently, IOs that perceive the universe are placed in the outbox

Fig. 3. A single AA have several entries within the MIC∗ deployment environment: an
entry dedicated to sense the universe, i.e. the sensor entry; and an entry dedicated to
affect the universe, i.e. the effector entry

120 A. Gouäıch, F. Michel, and Y. Guiraud

Fig. 4. A social autonomous agent owns an effector entry to affect the universe, and
several sensor entries representing its roles

matrix, and the result of their interaction is placed in the inbox matrix. On the
other hand, the effector entry is dedicated to affect the universe; consequently,
IOs to be perceived by other agents are placed in the outbox matrix and, in this
case, the inbox matrix is not used (marked with X, see e.g. Fig. 4). For the MIC∗

environment, the agent’s sensor and effector entries are considered as indepen-
dent agents; the AA is responsible for making this couple of agents behaving as
a single entity. This seems similar to the Holonic approach that considers a set
of agents as an single agent [21]; still, here we argue that a set of agents that
have been conceived to behave as a single entity can build a global agent.

To represent the fact that an AA plays several roles in groups, the mechanism
presented above is extended such that each AA is associated to an effector entry
and zero or more sensor entries. Each sensor entry represents a played role.
Figure 4 gives an example of an AA that plays three roles R1, R2 and R3. This
AA has a single effector to send messages, for instance this agent is sending three
messages simultaneously m1, m2 and m3 in three groups G1, G2 and G3. This
agent plays simultaneously several roles within the same group: R1 and R3 in
the group G1; and plays the same role in several groups: R3 in G1 and G3.

5.3 Mapping Table Between AGR and MIC∗:

Finally, by considering the presented concepts, the complete mapping among the
AGR concepts and MIC∗ is described by Table 1.

MIC∗: A Deployment Environment for Autonomous Agents 121

Table 1. Mapping between AGR concepts and commands to MIC∗

6 Example of Application: Ubiquitous Web

The Ubiquitous Web is an application that emulates the use of the web in a
mobile and ubiquitous environment. The purpose of this section is to present
how such an application has been modeled and built using the social framework
and to demonstrate its deployment on a simulated 3D virtual world.

122 A. Gouäıch, F. Michel, and Y. Guiraud

6.1 Organizational Modeling:

Systemic Functions. The goal of the application is to emulate the navigation
and access of html-based services for ubiquitous environments. There are two
systemic functions:

1. Web navigation and access of services: the software system is divided in
two main parts, namely the server and client modules. The server module
is responsible for delivering web-pages that describe the offered services and
forms. The client is responsible for translating the user’s commands into
requests to the server and displaying the html pages.

2. Discovery of services: the server module of the system is also responsible for
delivering a human readable description of the offered services. On the other
hand, the client is responsible for discovering all accessible services and for
retrieving their description.

Organisational Structure

Roles

1. WebServerRole: this role responds to the requests of agents playing
WebClientRole. A WebClientRole may request a html presentation;
or request a service. When requesting a service, the WebClientRole agent
can deliver the parameters which have been set by the user.

2. WebClientRole: this role represents the intermediary function between
the final user and the WebServerRole. The functions of this role are:
(a) request a particular html presentation from the WebServerRole;
(b) correctly layout the html presentation to the user;
(c) request services from the WebServerRole by sending the parameters

of the service as imported by the user.
3. ServiceDiscoveryServerRole: the main function of this role is to deliver

a human readable description of the offered service; and to deliver an access
point where to contact the actual service provider.

4. ServiceDiscoveryClientRole: the main function of this role is to check
the presence of ServiceDiscoveryServerRole agents and to retrieve their
description and the service’s access point.

Groups

1. WebGroup: this group holds agents that play WebClientRole and
WebServerRole roles.

2. ServiceDiscoveryGroup: this group holds agents that play ServiceDis-
coveryServerRole and ServiceDiscoveryClientRole roles.

6.2 Simulation of Ubiquitous Environments

In order to experiment with the application, a simulator has been developed for
ubiquitous environments using computer games technologies. The goal of this

MIC∗: A Deployment Environment for Autonomous Agents 123

Fig. 5. MIC∗ DEs are composed and decomposed according to the avatars’ communi-
cation areas

simulation is to emulate a physical world where the user, represented by an
avatar, can move and interact with the deployed services which are also repre-
sented as avatars. Behind each avatar an entire MAS is running: this includes
the AAs and the corresponding MIC∗ DE. Each avatar has a communication
area; when the avatars’ communication areas overlap, their corresponding MIC∗

DE are on-the-fly composed. Similarly, when the avatars’ communication areas
do not intersect, their corresponding MIC∗ DE are disconnected. This process is
shown graphically by Fig. 5. The user has a ’First Person Shooter’ (FPS) per-
spective and can move around in the virtual world. Figure 6 presents the main
views:

– Situation A: there is no service in the immediate surroundings of the user.
– Situation B: the user perceives a service, but the service is too far away to

establish a composition of the DEs.
– Situation C: since a communication link can be established, the MIC∗ DEs

are composed. Consequently, AAs located in both deployment environments
can interact.

When the user leaves the building of the service (after situation C), the MIC∗

DEs are immediately decomposed. Consequently, the AAs cannot interact. These
are the realistic properties of the ubiquitous environment and the applications
have to handle them. Thanks to the on-the-fly composition property of MIC∗

DEs, the constraints on communication links do not disturb drastically the soft-
ware systems. In fact, these constraints are handled explicitly in the developed
models. For instance, a disconnection is not very different from a silence of an
AA that has decided to not reply to external stimuli.

124 A. Gouäıch, F. Michel, and Y. Guiraud

Fig. 6. First-Person-Shooter (FPS) perspectives in the simulator

6.3 End User Graphical Interface

The user interacts with the client module through the web browser presented by
Fig. 7:

Fig. 7. Ubiquitous web browser GUI

– Situation 1: the agent that plays the role of ServiceDiscoveryClientRole
has not discovered any service yet. An empty list is presented to the user.
This corresponds to situations A and B of Fig. 6.

– Situation 2: the agent that plays the role of ServiceDiscoveryClientRole
has discovered some services by interacting with the agent that plays the
role of ServiceDiscoveryServerRole in the ServiceDiscoveryGroup
group. The list of the available services is presented to the user. This corre-
sponds to situation C of Fig. 6.

– Situation 3: the user has now a web-like interaction with the service. The in-
volved agents are those playing the WebClientRole and WebServerRole
roles. This also corresponds to situation C of Fig. 6.

7 Conclusion

This paper has argued that the DE is a key concept for agent-oriented engi-
neering, since it guarantees the autonomy of the agents while it defines their
interactions. As an example of such DE, MIC∗ has been presented.

MIC∗: A Deployment Environment for Autonomous Agents 125

The notion of DE separates the concerns of MAS engineering. In fact, the en-
gineering of agents is completely separated from the engineering of DEs. The DE
is the common structure offered to different developers to deploy AAs and make
a global system which functions emerge from the interactions of the individuals.

MIC∗ offers some interesting features such as the implementation of the inter-
nal integrity for AAs; the generative interaction and the on-the-fly composition.
These features have provided the basis for engineering open software systems in
complex and unpredictable environments such as ubiquitous environments.

However, MIC∗ has to provide more elaborated control and trust functions.
Currently, we are exploring the control of coordination and interaction proto-
cols by MIC∗. Hence, MIC∗ monitors the agents’ conversations with regards to
interaction and coordination protocols. Any AA that challenges these protocols
is identified by the DE and other AAs are prevented from its influences. Con-
sequently, the AAs are offered a normed DE where they can collaborate with
autonomous partners.

References

1. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling agents and
their environment. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented
Software Engineering (AOSE) III. Volume 2585 of Lecture Notes on Computer
Science., Springer, Berlin (2002) 16–31

2. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments
for multiagent systems: State-of-the-art and research challenges. In Weyns, D.,
Parunak, H.V.D., Michel, F., eds.: Environments for Mutiagent Systems. Volume
3477 of Lecture Note in Artificial Intelligence LNAI., Springer (to appear, 2005)

3. Zambonelli, F., Parunak, H.V.D.: From design to intention: signs of a revolution.
In: Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, ACM Press (2002) 455–456

4. Michel, F.: Formalisme, méthodologie et outils pour la modélisation et la simulation
de systèmes multi-agents. PhD thesis, Université Montpellier II (2004)

5. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organi-
zational view of multi-agent systems. In Paolo Giorgini, Jrg P. Mller, J.O., ed.:
Agent-Oriented Software Engineering IV: 4th International Workshop, Aose 2003.
Lecture notes in computer science LNCS, Springer Verlag (2003) 185–202

6. Gelernter, D., Carriero, N., Chandran, S., Chang, S.: Parallel programming in
linda. In: Proceedings of the International Conference on Parallel Programming.
(1985) 255–263

7. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda meets mobility. In: Inter-
national Conference on Software Engineering. (1999) 368–377

8. Omicini, A., Zambonelli, F.: The tucson coordination model for mobile information
agents. 1st Workshop on Innovative Internet Information Systems (1998)

9. Cabri, G., Leonardi, L., Zambonelli, F.: Reactive tuple spaces for mobile agent
coordination. Lecture Notes in Computer Science 1477 (1998) 237–247

10. Gelernter, D.: Generative communication in linda. ACM Transaction od Program-
ming Languages and Systems 7 (1985) 80–112

11. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10 (1995) 115–152

126 A. Gouäıch, F. Michel, and Y. Guiraud

12. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In:
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, Springer-Verlag New York, Inc. (1995) 56–70

13. Genesereth, Ketchpel: Software agents. Communications of the ACM 37 (1994)
48–53

14. Gouäich, A.: Requirements for achieving software agents autonomy and defin-
ing their responsibility. In: The First International Workshop on Computational
autonomy - Potential, Risks, Solutions (autonomy 2003). (2003)

15. Steels, L.: The biology and technology of intelligent autonomous agents. Robotics
and Autonomous Systems 15 (1995)

16. Sichman, J.S., Conte, R., Castelfranchi, C., Demazeau, Y.: A social reasoning
mechanism based on dependence networks. In Cohn, A.G., ed.: Proceedings of the
Eleventh European Conference on Artificial Intelligence, Chichester, John Wiley
& Sons (1994) 188–192

17. Luck, M., d’Inverno, M.: A formal framework for agency and autonomy. In Lesser,
V., Gasser, L., eds.: Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS-95), San Francisco, CA, USA, AAAI Press (1995) 254–260

18. Weiss, G., Rovatsos, M., Nickles, M.: Capturing agent autonomy in roles and xml.
In: Proceedings of the second international joint conference on Autonomous agents
and multiagent systems, ACM Press (2003) 105–112

19. Gouäich, A., Guiraud, Y., Michel, F.: Mic∗: An agent formal environment. In: the
7th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2003),
session on Agent Based Computing ABC’03. (2003)

20. Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems. In: Proceedings of the fifth international conference
on Autonomous agents, AA 2001, ACM Press (2001) 441–448

21. Parunak, H.V.D., Odell, J.: Representing social structures in uml. In: Agent-
Oriented Software Engineering II. Volume 2222 of Lecture notes in computer sci-
ence LNCS., Berlin, Springer (2002) 1–16

About the Role of the Environment in
Multi-agent Simulations

Franziska Klügl, Manuel Fehler, and Rainer Herrler

Dept. of Artificial Intelligence, Universität Würzburg, Würzburg, Germany
{kluegl, fehler, herrler}@ki.informatik.uni-wuerzburg.de

Abstract. Multi-agent Simulation can be seen as simulated multi-agent
systems situated in a simulated environment. Thus, in simulations the
modelled environment should always be a first order object that is as
carefully developed as the agents themselves. This is especially true for
evolutionary simulation and simulation of adaptive multi-agent systems,
as the agents environment guides the selection and adaptation process.
Also, for the simulation of realistic agent behavior complex and valid
environmental models have to be tackled. Therefore, a modelling and
simulation system should provide appropriate means for representing
the environmental status, including spatial representations, and dynam-
ics. On the other side, simulation infrastructure should be as simple as
possible, as a modeler with domain expertise is usually no computer sci-
entist. He might neither be trained in dealing with data structures and
efficient algorithms, nor in traditional programming.

After going into the details of simulated environments for multi-agent
simulations, this paper shows how environments with different character-
istics can be represented in a particular modelling and simulation system,
named SeSAm, without asking too much from its users.

1 Introduction

Modelling and simulation form a well-known method for studying a system with
the aim of for example improving its understanding, its design, or the proce-
dures for its control. The real world system is abstracted into a model. If this
abstraction is done in a correct and valid way, this model can be used for an-
swering the relevant questions instead of the original that is not yet or any-
more existing, not understood, inaccessible, etc. The main problem is the de-
sign and implementation of the model capturing the necessary – but not too
much – details of the original. There are diverse modelling paradigms that are
suitable for specific types of systems and types of questions. Multi-agent sim-
ulation is a rather new modelling paradigm that is specially appropriate for
complex systems of flexibly interacting entities, like social science or biological
models [1].

Multi-agent simulation is a modelling paradigm based on the concept of a
multi-agent system. In contrast to other forms of micro-level simulations with

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 127–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 F. Klügl, M. Fehler, and R. Herrler

objects, tokens or processes, the active entities in the model are agents inter-
acting with each other and with their environment. Although this higher level
of abstraction facilitates modelling in general, dealing with multi-agent models
leads to some difficulties due to the large amount of assumptions and parameter
in complex and detailed models. This is also due to the fact that the modeler
has to deal with the environment for the simulated multi-agent system. Thus,
dealing with the notion of the environment in a multi-agent simulation is an
interesting and important issue. If one could provide a method to support deal-
ing with the environment in a general applicable yet convenient way, designing
and implementing a multi-agent simulation would be facilitated in a highly valu-
able way.

An important aspect hereby is that the overall environment of the simu-
lated multi-agent system can be divided into two basic parts: the “simulation
environment” and the “simulated environment”. The simulated environment
is the part of the model that concerns all non-agent aspects. Thus, it pos-
sesses corresponding elements in the original system like the agents do them-
selves. In general, one may state that the simulated environment is everything
that is left when the agents of the multi-agent system are deleted from the
simulation model. It may contain simulated resources or dynamics that can-
not be associated with the particular agents that the model should be asked
about.

On the other side, the simulation environment provides the infrastructure for
running the simulation. For example, in an event-based simulation this simula-
tion infrastructure would contain the parts of the overall model and simulation
software that manages the event queue. In this case, the simulated environment
would be one special process that is also producing events which may affect all
agent processes. In contrast to this, the simulation environment contains the
infrastructure for running all processes.

However, the distinction between simulated environment and simulation en-
vironment is only explicit in simulation models where the simulation software
and the model representation are treated separately. Although this property
is highly desirable [2], it is not realized in many simulation applications, as
it requires an explicit, declarative representation language for the model that
is either interpreted or compiled for running the simulation. Many simulations
are implemented based on an (extended) programming language or framework
where infrastructure functions that manage the simulation, etc. are mixed up
with functions that are responsible for the description of the simulated environ-
ment, or even with the agent programs. In that case it is not trivial to find out
what parts of the code belong to the simulation infrastructure and what parts
belong to the simulated environment. Consider the example of a communication
infrastructure like a bus: The general functionality of message transport would
clearly be provided by the infrastructure, that means the simulation environ-
ment; however, probabilities for loosing a message or transportation error that
modify the content of the message are part of the specially modelled environment
in this multi-agent simulation model. Dealing with modelling and simulation en-

About the Role of the Environment in Multi-agent Simulations 129

vironments the question arises, how the development of a multi-agent simulation
model is supported best: What structures and functions should be provided in a
generic tool for multi-agent simulations? This has to be based on considerations
concerning simulated environments and simulation infrastructure, especially on
characteristics and possible representation of the former. As it is clear that every
model that should be treated with simulation needs simulation infrastructure,
we focus on simulated environments as this is something special for multi-agent
simulations - compared to other forms of simulation and also compared to multi-
agent systems in general.

Therefore, the remainder of the paper is starting with a short introduction
into multi-agent simulation, its basic components and different forms and conse-
quences not only for the simulated environment. There, the distinction between
simulated environment and simulation infrastructure will also be taken up again.
In section 3 some aspects concerning the simulated environment and its related
assumptions are detailed. This is followed by a short characterization of different
categories. In section 5 a simulation tool that is based on a flexible framework
for different environmental representations is presented. Examples given in sec-
tion 4 – applications of SeSAm – illustrate the different roles and characteristics
that a simulated environment may take. The contribution ends with a short
summary.

2 Multi-agent Simulation

A multi-agent simulation – executing a multi-agent model – in general can
be seen as a simulated multi-agent system that exists in a simulated environ-
ment [3]. The multi-agent system paradigm provides a very natural form of
modelling, especially for societies, because active entities in the original sys-
tem are interpreted as actors in the model. It can be seen as a special kind
of micro simulation where the agents are capable of autonomous and flexi-
ble acting and are interacting with each other and their common simulated
environment.

As mentioned in the introduction, the notion of environment is twofold when
dealing with multi-agent simulation. Like in any other form of simulation, a sim-
ulation infrastructure is necessary for providing the framework within that the
simulation model is executed. In multi-agent simulation an explicit treatment
of the simulated environment as a part of the model – separated from the in-
frastructure – is necessary and has specific relations to the general properties
and advantages of a multi-agent model. In contrast to this, the infrastructural
part of the environment can be seen in analogy to simulation engines, runtime
environments, etc. of standard simulations and is part of the simulator in any
case. The fact that the environmental part of the model can be more or less
distinctive, does not influence its importance. The necessary consequences for
tools for multi-agent simulations are discussed in section 5.

130 F. Klügl, M. Fehler, and R. Herrler

– Multi-agent models facilitate the simulation of variable agent numbers and
variable structures. Using a simulated environment, this can be dealt with
on the model-level without always referring to infrastructure.
For modelling the “death” and “birth” of agents, either every agent holds a
dynamic representation of its integration into the agent system for determin-
ing its interaction partners, like e.g. in the modelling framework AgeDEVS
[4]. The other possibility is using an explicit model of an environment where
agents “live” and encounter. An environmental model that captures the nec-
essary details of the original real-world environment of the simulated multi-
agent system, enables the modeler to reproduce the agents behavior – not
only its interaction behavior – more realistically without using artifacts like
middle agents unless they are also present in the original.

– A multi-agent simulation is well suited, when feedback loops in the agent
behavior are important. Those feedback loops – the agents actions am-
plify or weaken what this or other agents perceive that again triggers ac-
tions, and so on – are often mediated by an explicitly represented envi-
ronment. Examples are found in models of recruitment in social insects
(e.g. pheromone trails) When the decision making of the simulated entity
is not only based on its local surroundings but relates to more or less
global properties or values, then, these values need to be represented in
an explicit object that captures the simulated environment as a part of the
model.

– If inhomogeneous space is relevant for the simulation question, that means
that agents are dependent on local differences, an explicit representation
of this environment is required. A critical question here is challenging the
distinction between simulated environment and simulation infrastructure.
Whereas dynamics and configuration of and on the simulated space clearly
can be counted to the simulated environment, the basic framework for repre-
sentation cannot easily be assigned. 2- or 3-dimensional maps are normally
integrated and provided by the modelling and simulation tool. On such a
framework level those maps are independent from a particular model and
thus can be treated as infrastructure. In section 5 these aspects will be ad-
dressed in more detail.

Thus, one may see that the existence of a simulated environment – explic-
itly treated – is correlated to important advantages of multi-agent simulation
in general. However, the drawbacks of multi-agent simulation are also depend-
ing on the treatment of an simulated environment. Due to the possible level
of detail, the goal of a valid simulation behavior causes an immense effort on
justification, modelling and simulation. This has to be done on least two lev-
els of observation and for large parameter spaces, etc. Not only the agent be-
havior has to be validated, also the structure and behavior of the simulated
environment. Both has to happen based on the chosen characteristics of the
infrastructure, like time advance, update cycle, etc. The validity of the en-
vironmental model is often neglected, as the modeler focusses on the agents
model. Testing it can be even more costly than the justification of the as-

About the Role of the Environment in Multi-agent Simulations 131

Fig. 1. Ingredients for multi-agent simulations: agents, simulated environment and
simulation environment (infrastructure)

sumptions built into the agents. The level of abstraction of the environmen-
tal model is determined by the possible actions and perceptions of the agents.
An illustrative example is given in section 6.1 where the agent behavior is
quite simple whereas the environmental model has to capture complex physical
phenomena.

2.1 Basic Ingredients of a Multi-agent Model

Figure 1 shows the ingredients of a multi-agent simulation: Agents, simulated
environment containing additional objects that are not belonging to the agent
system under examination, and the simulation environment. These components
are described in more detail.

Agents. Agents are the most characterizing ingredient in multi-agent simula-
tion. Agents are autonomously active entities. Autonomy can be seen here in
relation to the other entities within the simulated environment. There can be no
autonomy in relation to the modeler that designed the agents. Agents in multi-
agent simulation mostly possess some form of internal representation denoting
beliefs or individual state, like age, gender, energy status, etc. The latter may
be described by state variables, but may also contain higher level representa-
tions of intentions or goals. Their dynamics are given by the model. The way
this is done can be distinguished into behavior describing and behavior gener-
ating models. The consequences for the environmental model are discussed in
section 2.3.

Simulated agents are situated in the simulated environment and in relation
to this may possess the well-known agent properties. They are “executed” by
the simulation environment.

Simulated Environment. Simulated agents are “living” in a simulated envi-
ronment that is an abstraction of the original environment and thus part of the
model. A single agent may interact with other simulated agents as well as with
non-agent entities in this environment or – if explicitly represented as some form
of “world”-entity – with the environment itself.

132 F. Klügl, M. Fehler, and R. Herrler

This global entity may carry some global state variables like overall temper-
ature, and even its own dynamics, e.g. temperature changes. These dynamics
also can be so complex, e.g. containing production of new entities, that one
may assign some form of behavior with the simulated environment. Every envi-
ronmental dynamic that is model-specific can be counted to it. The simulated
environment is unique for a specific multi-agent simulation.

The most basic form of a simulated environment is an “empty world”. In this
case the simulation model itself just consists of a society of simulated agents,
the simulated environment possesses no specific state, nor dynamics. Interaction,
e.g. communication using messages, is technically realized using the simulation
infrastructure, but without any model-specific characteristics like delay or poten-
tial errors. There is no simulated space. Such an empty simulated environment
may only be used in very abstract simulation models. Any simulation model
replicating more detailed aspects of the real world requires a reproduction of
some aspects of the agents environment. The modeler may use some kind of spa-
tial representation populated by non-agent entities like resources, or even other
(simpler) agents that are not in the focus of the simulation. The simulated envi-
ronment as an explicitly represented entity may also contain some state variables
and complex dynamics.

As the real world constrains the structure and behavior of the real agents,
the simulated environment plays that role for the simulated agent system. The
perceptions of the simulated agents need to have some origin in the environ-
ment that has to be represented in the environmental model. Thus, complex
agent models require rich environmental models that cannot be abstracted to
the empty environment without loosing the necessary complexity of the simu-
lated agents.

Simulation Infrastructure. The simulation infrastructure or simulation en-
vironment provides all means for executing the model in a runable simulation.
It provides all components of a simulator that can be provided by a modelling
and simulation framework that are in principle independent from a particu-
lar model. It controls the specific simulation time advance – e.g. time stepped
or event based, provides message passing facilities or directory services. Also
the instrumentation of the model that are means for data gathering during the
simulation execution, is part of it. Modelling and simulation tools provide spe-
cific simulation infrastructures. Nowadays many tools for developing multi-agent
simulations are available. When a modeler is using a standard programming lan-
guage, then he has not only to implement the model, but also the infrastructure
for running the model. This is not advisable.

The simulation environment basically constrains what can be simulated at
all. If for example a simulation tool does not provide means for message passing,
then message passing has to be reproduced using the means that the infrastruc-
ture provides, e.g. some shared memory. Thus, the message passing component
has to be realized as a part of the model. An analogous situation occurs when the
infrastructure basically is provided, yet not with the flexibility that is required,
e.g. when the simulation environment provides a bus system for addressed mes-

About the Role of the Environment in Multi-agent Simulations 133

sage passing but all messages are guaranteed to arrive without any loss. If the
modelled entities should be able to react on message transfer noise then this
noise has to be implemented on the model side by re-building some kind of in-
frastructure based on the provided one. The situation becomes even worse if
the infrastructure that the simulation environment provides, is not apt at all to
reproduce the properties necessary for the model. An example are discrete spa-
tial representations provided by the infrastructure, but continuous positioning
is necessary for the model. The modeler might ignore all a priori provided spa-
tial representation and re-implement the continuous positioning system based
on status information of the agents. However, this is very effortful and error-
prone and should be avoided as other tools seem to be more apt for the target
model.

The borderline between simulation infrastructure and simulated environment
for the agent system cannot be drawn precisely in every case: Is a specific
message passing system part of the infrastructure or part of the model? The
discretization of space in a map as well as some features of the time advance
function can be seen as both. However, this distinction is useful for several rea-
sons:

– The simulated environment is part of the model itself and should be specified
with at least the same amount of carefulness as the simulated multi agent
system.

– The simulated environment has to be validated as it serves as the mapping
of the real environment that contains the multi-agent system.

– Both, simulation infrastructure as well as simulated environment, carry as-
sumptions and abstractions from the original real-world system. Whereas
the assumptions concerning infrastructure are more technically dealing with
virtual time, update regime, etc, the assumptions concerning the simulated
environment are more conceptually constraining the agents possible percep-
tions and actions.

– The distinctions helps to realize a clear design when implementing a multi-
agent simulation, and even more when developing a model-independent tool
for them. Especially general purpose simulation tools should not include
too many assumptions about the environment – infrastructure and model.
In contrast to this, domain specific simulation systems, e.g. a simulation
system for biological simulations, may also include specific build-in parts for
simulated environments.

By integrating more powerful and flexible basic infrastructure for interaction
into a modelling and simulation tool, like configurable message passing systems
or special kinds of spatial representations, like 3d-grids, a modeler is allowed
to concentrate on the model-specific aspects of the overall environment, namely
the simulated environment. However, the more specific representations and tools
are given by the simulation environment, the more restricted is the variety of
simulation models that can be built using it.

134 F. Klügl, M. Fehler, and R. Herrler

2.2 Assumptions Concerning the Different Environments

Although modelling assumptions are mainly associated with and have to be
tested for the simulated environment, a modeler also has to be aware of the
assumptions laying behind the simulation environment.

– Abstractions concerning time advance are part of the simulation environ-
ment, whereas ontological definitions, like one simulation tick corresponds
to one year in realtime, are part of the model and therefore part of the
simulated environment.

– Assumptions concerning implementation of parallelism, e.g. update sequence,
process control belong also to the infrastructure. On the other side the con-
figuration of resources belong to the model of the environment.

– Assumptions concerning the basic spatial representation – that means whether
there is a 2d grid or a 3d continuous map – may belong to both depending
on the degree of freedom that is provided by the simulation infrastructure.
The interpretation of the granularity of the spatial representation (meter,
kilometer, etc) is part of the model.

In addition to the agent system itself, all these assumptions and abstractions
have to be justified for determining the validity of a multi-agent simulation.
Concerning the infrastructure, this means that the modeler has to be aware why
he is selecting a special kind of simulation infrastructure. If he is using a tool
that is providing the simulation environment, he hopefully may assume that the
infrastructure is working as specified.

2.3 Basic Categories of Multi-agent Simulations

Existing multi-agent models focus on different aspects of phenomena found in
societies. These range from the development of dependence networks based
on agents beliefs to emergent structures produced by a huge amount of mas-
sively interacting simple entities. Based on diverse domains and goals associ-
ated with particular multi-agent simulations, one may identify different types
of them. Due to the huge amount of possible useful applications, this is just
possible with fluent borderlines. Although these categories are in principle in-
dependent from the particular simulated environment the agents are living in,
they nevertheless have important effects on the role and usage of the simulated
environment.

Models for Prediction Versus Explanation. Simulation models in general
are designed to answer questions about some real or hypothetic original system.
These questions can be of either explanatory or predictive nature.

In explanatory simulation models the aim of the simulation study is to iden-
tify yet unknown relationships and interactions of the real world system. The
hypothetic agent behavior reproduced in the simulation model should lead to
some desired valid global behavior of the model. Thus, the goal is to design valid
global model behavior by identifying a valid detailed model structure. Based on

About the Role of the Environment in Multi-agent Simulations 135

that, it is hoped to be possible to explain how the behavior of the real system
is produced. Summarizing, in explanatory simulation one starts with a theory
about the real world and tries to show the the plausibility of this theory using
simulation.

In predictive simulation it is presumed that the knowledge about the system
is available at the necessary level of detail. One wants to build a simulation
model that enables to predict how the corresponding real world system will
behave under certain conditions.

The consequences for the simulated environment are the same as for the agent
system: Explanatory models are more abstract that predictive ones. That means,
in the former the abstractions have to be controlled thoroughly so that they
correctly fit to the agent behavior. The simulated environment thereby is not
necessarily corresponding to the original environment in the same way the agents
are corresponding to the original. The focus lies on the agents, the environment
is just there to provide appropriate stimuli. On the other side, in predictive
simulations the requirements concerning the details of the simulated environment
are much harder. If predictive statements about the original produced by the
model should be reasonable, the environmental model on its own should be able
to produce correct predictions.

Behavior-Describing Versus Behavior-Generating Models. Another im-
portant distinction can be identified between behavior-describing and behavior-
generating models of the agents. In behavior-describing agent models the agent
can be modelled by specifying rules or scripts, etc. The modeler specifies the
dynamics of the agent and its decision making directly e.g. using rules that
determine the agents actions depending on its current state and perceptions.
Activity diagrams may be used for structuring the rules allowing complex be-
havior models [3].

Behavior-generating agent models on the other hand are based on some kind
of quality function or goal representation. The model provides an set of primitive
actions and knowledge about the pre- and post-conditions of these actions. An
agent is able to use some form of planning algorithm for determining the next
action. Examples are models using extended AgentSpeak(L) [5].

In principle, there is a seamless transition from behavior-based to behavior-
generating models. Some agent architectures that are based on skeletal-plan-
like representations (like RAP [6] or PRS [7]) use some form of mixture. The
potential behaviors are highly fixed by the plan representations, whereas the
actual behavior of the agents is determined by algorithms (high-level rules) that
select the appropriate plan skeleton and concretizes it according to the current
situation.

Depending on the simulated environment, one of the both alternatives might
seem more suitable: Behavior-describing methods are hard to handle if the envi-
ronment is very rich and the agent has a very high degree of freedom in selecting
the appropriate actions. In contrast to this, behavior generation may be unnec-
essarily complex in a model with fixed processes and few possible perceptions
and decisions.

136 F. Klügl, M. Fehler, and R. Herrler

Experience shows that the selection of one form of agent architecture also
requires different ways of dealing with the simulated environment. Describ-
ing models usually makes more assumptions concerning coupled dynamics be-
tween agents and the simulated environment. Agent-independent dynamics and
agents decisions have to be synchronized carefully by the modeler. Otherwise
a model easily becomes very complex when all possible environmental states
have to be predicted and reactions specified in the behavior description. There-
fore, stochastic dynamics of the “world entity” require more complex behavior
descriptions.

Complex dynamics that are not foreseeable by the modeler are usually easier
to deal with using a more complex agent architecture with behavior generation.
The planning capabilities allow them to react to new situations, even if no agent
behavior was explicitly specified for these situations. Agents may flexibly change
their behavior if it seems appropriate to their goals.

3 Aspects of the Simulated Environment

The treatment of the simulated environment is essential for the overall model.
This is discussed in the following in more detail. If the simulated environment
is very reduced in the model, the complete environment of the multi-agent sim-
ulation, including the simulation infrastructure, nevertheless has to be tackled
explicitly. However, this is not given here.

3.1 Role of the Simulated Environment for the Model

The simulated environment reproduces the environment of the original system.
However, it does not need to possess a correspondence comparable to the agents,
but may be modelled more or less abstract due to simulation efficiency but also
due to the following functions that it may be responsible for.

The simulated environment forms an abstraction of the original environment
of the agent system. It contains abstractions of all relevant active and passive el-
ements in this environment. Thus, it forms the grounding and conceptual frame-
work for the overall model abstraction. For example, in an abstract testbed used
for studying different hypothesis about insect task allocation (see [8]) the sim-
ulated environment contains task objects with dynamic requirements that have
to be worked on by the agents.

The simulated environment contains what the agents may perceive and ma-
nipulate. Thus, its richness and complexity determines the level of detail of the
simulated multi-agent system. Consider for example a shopping model: Only if
the simulated shops possess representations of properties like assortment or at-
mosphere, simulated agents are enabled to ground their shopping decision on
that kind of information.

Thus, the simulated environment frames and constrains the behavior of the
simulated agents. This is corresponding to the role of the environment in sit-
uated multi-agent systems. This issue is especially important in adaptive and

About the Role of the Environment in Multi-agent Simulations 137

evolutionary simulation. Agents may learn based on reward or similar feedback
produced by the environment. In evolutionary simulations the selection is real-
ized by the environment. Thus the direction of the adaptation process is given
by the simulated environment.

Two of these aspects are now discussed in more detail:

3.2 The Right Level of Detail/Realism

In general the required level of detail for a simulation model is determined by the
question that needs to be answered in the simulation study. Abstract questions
may be answered by abstract simulation models that only require an abstract
simulated environment. Questions that aim at predictions or are very concrete
regarding some details of the original system, can only be answered by models
that capture a certain level of detail. As the level of detail of the simulated envi-
ronment determines the possible level of detail of the simulated multi-agent
system, both, simulated environment and multi-agent system, become quite
complex.

However, the problem with more realistic, detailed, and complex simulated
environments and multi-agent systems – as with complex systems in general – is
that they are hard to control and analyze. Complex relationships are controlled
by using large numbers of model parameters related to the environment, the
agent behavior, but also to the interaction between them. Examples are the
movement speed of the simulated agents or thresholds of perceived values that
are triggering certain behaviors. A valid configuration of these model parameter,
i.e. a choice of parameter values that makes the overall simulation valid, can not
determined a priori. As a result, calibration – that means the search for such a
configuration – is essential, but can become very costly.

This fact makes the integration of real-world data into the design and cali-
bration process very important. Parameter values may be set based on empirical
data directly gained from the original system. Basically, this allows to keep con-
trol over complex simulation models by enabling to reduce and constraint the
search space.

In general one may state that the design of a realistic environment is an
especially important step in the simulation design process as the realism and
validity of the environmental simulation constraints the validity of the rest of
the simulation system, i.e. the agent simulation. No realistic agent simulation
can be created without a realistic environmental simulation.

3.3 Evolutionary and Adaptive Multi-agent Simulation

As mentioned above, the particular model of the environment is especially im-
portant in simulations with adaptive agents or evolutionary simulation. Reward
and feedback that the adaption process is based upon, are usually produced by
the simulated environment. For example in a route choice model with agents that
adapt their selection based on their experiences with their former decisions, the
success of an agent is computed by the environment in the sense that the actual

138 F. Klügl, M. Fehler, and R. Herrler

movement is executed in the simulated environment on its particular routes. An
analogous situation can be identified in evolutionary simulations. Selection is
normally realized by agents that are either not surviving long enough to repro-
duce or possess only limited chances for reproduction. This might be based on
food availability and again based on the interaction with the environment. Thus,
the environmental part of model is decisive for the direction of the adaptation
process.

One might interpret an evolutionary simulation as an optimization prob-
lem with the simulated environment as its objective function. If this objective
function has been chosen incorrectly, its attractor is not the desired attrac-
tor corresponding to the real world system and the optimization process will
not yield the desired optimal setting: The complete evolution and adaption
process centers around finding the best agent behavior for a given and possi-
bly changing environment. Thus, as the adaption process is strongly related to
the environmental properties, it is only possible to design a valid evolutionary
process if the attractor of the simulation system, defined by the simulated en-
vironment, has been designed correctly. Otherwise the simulation system will
evolve towards some agent behavior without correspondence to the original sys-
tem. Then, nothing can be learned from the simulation about the real world
system.

The consequence is that the simulated environment has to be tested very
carefully to exclude artifacts in the results. That means, one has to make sure
that the results of the adaptation process are not influenced by implementation
details of this part of the model in an unintended way.

4 Characteristics and Categories of Simulated
Environments

In this section characteristics of different types of simulated environments are
presented. In general the most apparent property of a simulated environment
is whether it is based on some spacial representation, namely a map. Different
categories may be identified on this basis. Other dimensions that can be used as
a categoric basis for discussion are its properties from the point of view of the
agents, as given in [9]. Discreteness can also be seen from the modelling point of
view relating to space and time. Another property may be whether the simulated
environment is active or passive that means if it possesses some dynamics that is
independent from the agents actions, e.g. some global temperature hat changes
without influence of the simulated agents or if all changes in the environment are
reactions triggered by the agents. One might also distinguish between simulated
environments with state-like properties, containing passive resource objects or
active entities in addition to the agents that are at the heart of the simulation
study.

The following discussions are geared to the dimension of the used spacial
framework in the simulated environment. After non-spacial simulated environ-

About the Role of the Environment in Multi-agent Simulations 139

Fig. 2. Spacial representations with growing complexity

ments, several types of spacial representations starting with a very simple grid-
based to more sophisticated ones are presented.

4.1 Non-spatial Environments

Locality and agent positions are not necessary depending on some notion of
space. For instance simulated agents living in a simulated network are depending
on the network topology. The spatial position of the hosting machine has no - or
just little - effect on its behavior. In this case the network topology substitutes
the map. The environmental model determines the topology, provides and limits
communication of the agents.

Network structures – often without explicit representation of nodes and con-
nections – can also be found in social models where an agent resembles a node
and some relationship, e.g. acquaintance, can be seen as connection. Current
prominent examples in this category are the so called small world networks [10]
that form the basis not only for agent-based epidemic simulations. Another ex-
ample is the simulation of a marketplace, where every agent has access to all
offers. This simulated environment may provide tools for searching for certain
products and for negotiation with suppliers, but has no internal structure.

As these examples show, there are also application domains where simulated
agents are situated but not spatially positioned. This is especially true for simu-
lation of software agents and abstract social science models. There is no need for
specific frameworks provided by the simulation infrastructure, however tools for
supporting message passing, addressing or searching for agents with particular
properties may be helpful in certain simulation models.

Multi-agent simulation is a highly attractive method especially in biology as
with the possibility of simulating individually distinct entities also heterogeneous
space can be part of the model. In figure 2 different forms of maps are given.
They are discussed in the following.

4.2 Discrete Spatial Environments

Most multi-agent simulation are using discrete maps as the basis for their sim-
ulated environment. This is simply due to the fact that the implementation of

140 F. Klügl, M. Fehler, and R. Herrler

functionality related to space is simpler and can be done quite efficiently. On the
other hand, in abstract simulation models there is no need for arbitrary exact
positioning, discrete positions are sufficient.

Thus, agent simulation tools like Mason [11] or Ascape [12] provide two di-
mensional grid maps for the representation of space. The given grid has a lim-
ited dimension and size. The agent’s position is specified by the coordinates
of the grid cell it is currently set to. The agent might also possess some at-
tributes representing speed and direction it is heading towards. Naturally also
these values have to be discrete (e.g. N, S, E, W). Sometimes the environment
is used as a torus, that means that the world has a finite extension but no
borders. One can think of it like the opened surface of a donut. If a moving
agent reaches an edge of the map, it continues its movement on the oppo-
site edge.

Discrete environments are often associated with Cellular Automatons. Cel-
lular Automatons were first introduced by Von Neumann [13] and are used for
many microscopic models in traffic simulation, medicine, biology and social sci-
ence. Every cell in a n-dimensional grid has a state and a rule set that updates
this state depending on the states of the neighboring cells. In multi-agent simu-
lation cellular automata can be used as more complex environmental model. A
prominent example is the sugarscape model [14].

4.3 Continuous Spatial Environments

Continuous environments are less restrictive compared to discrete environments:
They allow agents to be situated between the cells. The position of an agent is
then described by coordinates of rational numbers. Truly continuous environ-
ments are not possible in computer simulation, since digital computing devices
are finite and discrete in nature. Nevertheless, from the modelers point of view
representing coordinates as a floating point numbers is as good as dealing with
“continuous” environments. Another aspect of continuous environments is that
agents usually are modelled with a certain size or shape. The direction of move-
ment and speed may be represented on a more precise scale. This is not only
important for more realistic modelling, but also for visualization because one
cannot refer to a certain grid size. However, it makes implementation of such
continuous maps more complex.

The main advantage of continuous space representations is that they allow
the creation of more realistic simulation models as the original system mostly
is also based on a continuous map. Modelers have less effort in proofing that
the effects of discretion do not tamper the desired result. Finally, it should
not be neglected that visualization and animation of continuous maps are more
convincing.

4.4 Geographic Data for Environments

In some applications simple continuous spacial representations do not meet the
requirements of simulation modelers. For example in microscopic traffic sim-

About the Role of the Environment in Multi-agent Simulations 141

Fig. 3. Examples for thematic dimensions of a GIS [15]

ulations some form of road network can be used as the basis of the simulated
environment. To represent such a structure using a plain continuous map is quite
costly.

On the other side, real world data is stored in Geographic Information Sys-
tems (GIS) that provide means for representing structures with linear and plane
shapes: so called vector data is based on a explicit representation of spatial shape
objects like lines or shapes whereas raster data – the second data format used in
Geographic Information Systems – associates data items directly with discrete
(grid) positions.

For the representation of road networks vector data is highly appropriate. In
addition to spatial information, data is grouped to thematic layers (see figure 3).
Each layer is containing a certain type of objects, like roads, rivers or areas with
certain utilization. These objects may be augmented with thematic (statements,
attributes) and topological information (nodes, edges, areas).

For realistic simulations the use of such data is the optimum, as no abstrac-
tion between the real-world data and the one used in the model is necessary.
Whereas raster data relates to grid environments, the use of a (vector-) GIS-
based-environment in multi agent simulation means that agents and objects of
the world may not just be associated with positions, but also with shapes or
lines. Agents may be restricted to move on a road network instead of moving
freely across the map. Algorithms for finding shortest paths to a destination
and collision detection might be of interest. Currently, there are just a few tools
supporting agent based simulation based on GIS data [16].

5 SeSAm

In contrast to the simulated environment that is model-specific, the simulation
environment that provides the infrastructure for running a simulation should
be provided by a modelling and simulation tool. As mentioned in the previous
section, there are several tools that provide frameworks for specific spacial repre-
sentations. As such a framework is independent from a particular model, it may

142 F. Klügl, M. Fehler, and R. Herrler

be counted to the infrastructure. However, the map representation may be too
inflexible for a certain application. In the following a tool for the development
of multi-agent simulations is introduced that not only provides an explicit rep-
resentation framework for a simulated environment, but also allows to change
infrastructural components like basic map representations.

SeSAm (ShEll for Simulated Agent systeMs, www.simsesam.de) is an inte-
grated tool for modelling and executing multi-agent simulations. The first proto-
type of SeSAm was implemented in LISP in 1995 and was specialized to biolog-
ical simulations. Over the years SeSAm grew into a general purpose simulation
tool and was redesigned in JAVA after the year 2000. Today, SeSAm provides
powerful modelling functionality for the easy construction of complex models.
Based on a high-level, partially declarative model representation it offers visual
programming for all tasks from modelling to data gathering during simulation
execution.

The basic element of all behavior descriptions in SeSAm are so called function
primitives that can be combined to more abstract functions and used in higher-
level behavior representations. These function primitive provide the interface
between the declarative model representation and the executable JAVA program.
In addition to the executable code every primitive requires an explicit description
of its arguments, output, type and documentation. There is already a useful set
of these basic functions available. This given set can be extended by the user.

The behavior of an agent is described using an activity graph (see figure 4 for
a screenshot). These UML-like activity graphs are easy understandable. They
basically consist of activities and transition rules. An activity contains a series
of actions that is executed as long as the agent is in that activity. Firing rules
may terminate one activity and activate the next activity.

Fig. 4. Example of behavior modelling in SeSAm

About the Role of the Environment in Multi-agent Simulations 143

The description of structure and dynamics is done on the level of agent, re-
source and world classes. Instances of those entities are configured and positioned
in a “situation” that can be seen as a configuration. It may serve as a starting
point for simulation execution. In a situation the simulated environment consist-
ing of one world instance and potentially several resource instances is connected
to the agent model done by bringing agent instances in relation to world and
resources. After that, the actual simulation itself can be started.

The definition of a simulated environment in SeSAm consists of a particular
world class and any number of agent and resource classes. The world as well
as the agents are active entities. That means that also the dynamics of the
world are described using activity graphs. In addition to that, a world may
possess an map on that all other entities may be positioned or may position
themselves.

The spacial representation framework that provides the structures for the
map is based on a plugin concept. The default plugin associates a 2-dimensional
continuous map with a world and provides relevant data structures for spacial
information to other entities. The plugin also comes with specific primitive func-
tions, e.g. for movement or perception. Based on that plugin concept different
kinds of environmental representations can be integrated. Plugins have been
developed for 3-dimensional maps as well as for vector data from Geographic
Information Systems.

Thus, the infrastructure provided by SeSAm does not restrict the simulated
environment. The framework for spacial representation may be exchanged to one
that is appropriate for modelling the environment of the multi-agent system. The
language for the environmental model is as powerful as the one for represent-
ing the agents enabling the modeler to design and implement an appropriate
simulated environment for his simulated multi-agent system.

6 Application Examples

In this section examples of models from different application domains developed
using SeSAm are presented. They show how different simulated environment
may play different roles in the overall simulation model.

6.1 Biological Simulation

The first application example is a biological simulation: A simulation model of
honey bees fostering their brood. The basic aim was the comparison of different
task selection strategies. The brood model seems to be very apt for this aim as
a restricted set of tasks has to be tackled and the success of a strategy is easily
measured by the state and number of surviving brood. Although the simulated
environment is based on a discrete map, the environmental model is very rich. It
has not only to reproduce the physical dynamics of heat transfer in a sufficiently
valid way for providing the basis for valid model of the heating task, it also has

144 F. Klügl, M. Fehler, and R. Herrler

to contain other agents, namely the brood that has to be feeded and may suffer
from bad provisioning and temperature.

In order to guarantee the survival of a bee hive, bees need to make sure
that enough new bees are born to replace the worker bees that died by age or
while carrying out some task. The honey bee brood nest lies in the center of
the bee hive. It consists of a certain number of cells containing bee larvae. The
bee queen moves around the brood nest and lays eggs into empty cells. During
the first stage of growth the brood needs to be fed constantly. This is achieved
by working bees bringing food to the individual cells. After this first stage the
larvae containing cells are capped by the worker bees. It is critically impor-
tant for their development that these capped larvae can develop at a constant
temperature of about 35 degrees. To achieve this, the worker bees crawl into
empty cells all over the brood nest and start to heat the cells by moving their
flying muscles without actually fanning. The heat created at different points of
the brood nest then disperses through the wax resulting in a comfortably warm
brood area.

The SeSAm simulation model for reproducing this system consists of three
important components. The simulation of the brood nest, the simulated brood
agents, and the behavioral simulation of the worker bee agents fostering the
brood. The actual multi-agent system for the research question are the working
bees, the rest of the model can be identified as the simulated environment for it:

The real brood nest lies in the middle of the bee hive and is shaped like a
lump. To simulate this nest a spacially explicit environmental model had to be
used. As the brood nest consists of cells and bees are moving between cells a
discrete spatial representation was decided for with bees moving from cell to
cell. Here, a discrete grid could be used without loosing validity. Based on the
comb structure the original 3D brood nest could be abstracted to a 2D spatial
representation. Figure 5 shows a small part of the animation for the honey bee
brood nest simulation.

In the context of temperature regulation the simulated environment plays an
especially important role. In order to maintain an evenly temperatured brood

Fig. 5. Small section of the honey bee brood nest model animation

About the Role of the Environment in Multi-agent Simulations 145

nest the bees heat single cells. This punctual heat is dispersed between the cells
in a way determined by the properties of the wax and the way the brood nest
is constructed. Only a realistic, valid environmental model of temperature dis-
persal in the honey bee brood nest will allow to reproduce realistic bee agent
behavior. Thus, it is important to find the optimal level of detail for the en-
vironmental simulation. Based on particular measurements of the temperature
dispersal in real bee comb with and without larvae, a physically correct model
was developed and used in the simulated environment. It was also useful for
determining parameters of the agent behavior, like maximum heat produced
by a bee.

This example shows that the validity of the overall multi-agent simulation
model completely depended on the validity of the environmental model which
had to be defined and validated first.

6.2 Hospital Logistics Simulation

The second example shows that an equally detailed simulated environment does
not need a map, but can also be developed without using explicit spacial repre-
sentations:

The organization of patient’s treatment is one of the most important man-
agement jobs in hospitals daily life. Patient schedules have effects on the load of
resources (staff, devices) and the average patient stay time. They are therefore
a very promising object for optimization. Different management actions can be
taken, like the purchasing of additional devices, the reorganization of shifts or
the introduction of a new scheduling strategy. In most cases reliable predictions
about the effects of such strategies on the relevant output parameters cannot be
done. Multi-agent simulation can help to get a better understanding about the
effects and support decisions [17].

Basically a multi-agent simulation of this system can be realized in a non-
spatial environment – like done in queueing network simulations. Patient agents
follow a treatment process that is determined based on their disease. Functional
units for diagnosis and treatment are also represented as agents and responsible
for the execution of the medical actions.

In figure 6 an example simulation is shown. The picture depicts the situation
of a clinic for radiation therapy. The spacial representation is just for visualiza-
tion purposes and has no effect in the model. There are four units for radiation
therapy as well as two units for initial examinations. These units provide a x-
ray-device and a radiation simulator. When patients arrive at the hospital one
of three possible treatment processes is randomly chosen and necessary tasks
are scheduled. After scheduling the tasks have to be executed at the functional
units. However, emergency events, breakdowns of devices and uncertainties in
the duration of treatments might cause delays.

The basic functionality of the simulated environment is to represent and han-
dle the process of new patients arrivals. Also “catastrophic” events like break-
downs are triggered by the simulated environment.

146 F. Klügl, M. Fehler, and R. Herrler

Fig. 6. SeSAm simulation of a radiation therapy clinic

Spatial information is negligible in this scenario because transfer and move-
ment times are abstracted away, only waiting and actual treatment times are
recorded. In a more detailed model also those spatial aspects can be integrated.

6.3 Microscopic Traffic Simulation

In contrast to the examples presented above, a sophisticated spatial representa-
tion is necessary for microscopic models of actual driving examining to the origin
of traffic jams. As mentioned above, for such models real word data containing
information about the road map should be used.

Based on the SeSAm-GIS connection, an agent-based traffic model was im-
plemented that uses the Nagel-Schreckenberg model of car following behavior
for simulating actual driving in a small road network [16].

The original Nagel-Schreckenberg model [18] is a 1-dimensional Cellular Au-
tomaton, where a road was cut down to discrete cells. It was also extended to
road networks. The state of a cell represents the speed of the vehicle on that
cell. One time step in the simulation corresponds to one second, a cell of the
road network to 7,5m. Every vehicle-driver on the road has a maximum speed.
Four rules determine the behavior of the vehicles. Three of them control accel-
eration and deceleration. The driver accelerates if there is enough space in front
of the vehicle to speed up, decelerates if there is not enough distance. There is a
certain probability for additionally decreasing the speed. The forth rule controls
the actual movement. Thus, the speed is always calculated based on the current
speed and the distance to the preceding vehicle. This simple traffic flow model is

About the Role of the Environment in Multi-agent Simulations 147

Fig. 7. Simulation of a traffic scenario based on real world road network data

able to reproduce real-world traffic phenomena like stop and go traffic or traffic
jams without particular reasons like accidents or road works.

This basic model was extended to a multi-agent simulation model, where
vehicles corresponded to simulated agents. Road network data was imported
from a real world small city map. The behavior was basically the same as in the
original model, except that there are some additional rules for finding the short-
est path and deceleration in front of corners. Vehicle drivers have a punctual
shape and are capable of moving just on roads. The roads are represented as
line-shaped resources with attributes like maximum allowed velocity. The agents
are generated at several source positions and leave the road network at desig-
nated goal positions. At crossings drivers always change the direction towards
their individually assigned goal. Figure 7 shows a screenshot from an example
simulation run.

The simulated environment consists here of the road network – the repre-
sentation of inhabited areas is just for visualization purposes – that limits the
movement of the agents. The dynamics of the simulated environment are associ-
ated with the generation of new agents at the source positions and the deletion
at their goal. One may also imagine that dynamics may affect the structure
and parameters of the road network, like accidents blocking roads or temporary
speed limits.

Directly using vector data from GIS for representing the road network was
advantages as real world could be imported and used in the simulation directly
without any discretization step. The reality can be depicted in much more detail

148 F. Klügl, M. Fehler, and R. Herrler

and simulation needs less abstraction and can therefore be more exact. That is
an important prerequisite for prediction purposes.

7 Conclusion

In this contribution the relevance of the simulated environment in addition to
the simulation infrastructure in multi-agent simulations was tackled. Since the
simulated environment is the constraining factor for the multi-agent simulation,
its design has to be done very careful. The simulation environment, namely the
infrastructure for running the simulation, determines the structures that are
possible at all – e.g. if there is no message passing functionality provided, the
usage of message passing in the simulation model is hindered. Thus, also the
simulation environment has to be selected with this in mind.

Special purpose simulation environments provide frameworks for rich envi-
ronmental models but are inflexible when they have to be used beyond their
envisioned application domain. General purpose simulation environments offer
a more flexible way to deal with structures used in the simulated environment.
However, they are more demanding to use as the environmental model is almost
completely part of the simulation model that has to be developed and imple-
mented by the modeler. To support the modeler, such tools should be open for
extensions concerning environmental modelling. A possibility for this could be
to provide plugins that define basic rules for the required scenario, thus making
the generic tool ”specialize-able”.

References

1. Klügl, F., Oechslein, C., Puppe, F., Dornhaus, A.: Multi-agent modelling in com-
parison to standard modelling. Simulation News Europe 40 (2004) 3–9

2. Kuljis, J.: User interfaces and discrete event simulation models. Simulation Practice
and Theory 1 (1994) 207–221

3. Klügl, F.: Multi-Agent Simulation – Concept, Tools, Application (in German).
Addison Wesley, Munich (2001)

4. Uhrmacher, A.M.: Object-oriented and agent-oriented simulation: Implications for
social science application. In Troitzsch, K.G., Mueller, U., Gilbert, G.N., Doran,
J.E., eds.: Social Science Microsimulation. Springer (1996) 432–447

5. Rao, A.S.: Agentspeak(l): (bdi) agents speak out in a logical computable language.
In de Velde, W.V., Perram, J., eds.: Seventh European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands. Number
1038 in LNAI, Springer (1996) 42–55

6. Firby, J.: Adaptive Execution in Complex, Dynamic Domains. PhD thesis, Yale
(1989)

7. Georgeff, M.P., Ingrand, F.F.: Decision making in an embedded reasoning system.
In: Proc. of the IJCAI’89. (1989) 972–978

8. Klügl, F., Triebig, C., Dornhaus, A.: Studying task allocation mechanisms of
social insects for engineering multi-agent systems. In Anderson, C., Balch, T.,
eds.: Mechanisms and Algorithms of Social Insects, Atlanta, 2003. (2003)

About the Role of the Environment in Multi-agent Simulations 149

9. Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice Hall
(1995)

10. Milgram, S.: The small world problem. Psychology Today 60 (1967) 729–755
11. MASON: Mason. (http://cs.gmu.edu/ eclab/projects/mason/) (last visited

30.11.2004).
12. Parker, M.: What is ascape and why should you care? Journal of Artificial Societies

and Social Simulation 4 (2001)
13. von Neumann, J.: The Theory of Self-reproducing Automata. Univ. of Illinois

Press, Urbana, Illinois (1966)
14. Epstein, J.M., Axtrell, R.: Growing Artificial Societies. Social Science from the

Bottom Up. MIT Press, Cambridge, MA (1996)
15. Bill, R.: Grundlagen der Geo-Informationssysteme Band 1 Hardware, Software

und Daten. Wichmann (1999)
16. Schüle, M., Herrler, R., Klügl, F.: Coupling gis and multi-agent simulation – to-

wards infrastructure for realistic simulation. In Lindemann, G., Denzinger, J.,
Timm, I.J., eds.: Multiagent System Technologies, Proceedings of the Second Ger-
man Conference MATES 2004. Number 3187 in LNAI, Springer (2004) 228–242

17. Paulussen, T.O., Jennings, N.R., Decker, K.S., Heinzl:, A.: Distributed patient
scheduling in hospitals. In Kohn, A., Gottlob, G., eds.: Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico.
(2003)

18. Nagel, K., Rasmussen, S.: Traffic at the edge of chaos. In Brooks, R.A., Maes, P.,
eds.: Artificial Life IV, MIT-Press (1994) 222–235

Modelling Environments for Distributed Simulation

Michael Lees1, Brian Logan1, Rob Minson2, Ton Oguara2,
and Georgios Theodoropoulos2

1 School of Computer Science and IT, University of Nottingham, UK
{mhl, bsl}@cs.nott.ac.uk

2 School of Computer Science, University of Birmingham, UK
{txo, rzm, gkt}@cs.bham.ac.uk

Abstract. Decentralised, event-driven distributed simulation is particularly suit-
able for modelling systems with inherent asynchronous parallelism, such as agent-
based systems. However the efficient simulation of multi-agent systems presents
particular challenges which are not addressed by standard parallel discrete event
simulation (PDES) models and techniques. PDES approaches based on the logi-
cal process paradigm assume a fixed decomposition into processes, each of which
maintains its own portion of the state of the simulation. The interaction between
the processes is fixed in advance and does not change during the simulation. In
contrast, simulations of MAS typically have a large shared state, the agents’ en-
vironment, which is only loosely associated with any particular process. In this
paper, we present a model of the shared state of a distributed MAS simulation of
situated agents. We consider the problems of efficient sensing, parallel actions and
action conflicts, and present preliminary work on an approach to the simulation
of the environment which addresses these issues.

1 Introduction

Simulation has traditionally played an important role in multi-agent system (MAS)
research and development. It allows a degree of control over experimental conditions
and facilitates the replication of results in a way that is difficult or impossible with a
prototype or fielded system, freeing the agent designer or researcher to focus on key
aspects of a system. As researchers have attempted to simulate larger and more complex
MAS, distributed approaches to simulation have become more attractive [1, 2, 3]. Such
approaches simplify the integration of heterogeneous agent simulators and exploit the
natural parallelism of a MAS, allowing simulation components to be distributed so as to
make best use of the available computational resources.

However the efficient simulation of multi-agent systems presents particular chal-
lenges which are not addressed by standard parallel discrete event simulation (PDES)
models and techniques [4, 5]. While the modelling and simulation of agents, at least
at a coarse grain, is relatively straightforward, it is harder to apply conventional PDES
approaches to the simulation of the agents’ environment. Parallel discrete event simu-
lation approaches based on the logical process paradigm assume a fixed decomposition
into processes, each of which maintains its own portion of the state of the simulation.
The interaction between the processes is fixed in advance and does not change during

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 150–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modelling Environments for Distributed Simulation 151

the simulation. In contrast, simulations of MAS typically have a large shared state, the
agents’ environment, which is only loosely associated with any particular process. At
different times, different agents can access and update different parts of the shared state.
The efficient simulation of the environment of a multi-agent system is therefore a key
problem (perhaps even the key problem) in the distributed simulation of MAS.

In this paper, we present a model of the shared state of a distributed MAS simulation.
We consider the problems of efficient sensing, parallel actions and action conflicts, and
present preliminary work on an approach to the simulation of the environment which
addresses these issues. The remainder of the paper is organised as follows. In section 2,
we briefly outline a model of a MAS as a set of logical processes and explain why MAS
simulations naturally result in a large shared state. In section 3 we present a model of
the shared state as a global tuple space and describe how the agents’ sensing and actions
in the environment can be modelled as operations on the tuple space. In section 4 we
describe an approach to the efficient distribution of the shared state and briefly describe a
prototype implementation of this approach based on Communication Logical Processes.
In section 5 we discuss related work and in section 6 we conclude with some remarks on
the relationship between our approach and the requirements of distributed environments
for MAS in general.

2 Modelling Multi-agent Systems

In this section, we outline our model of the agents and their environment.
We are primarily concerned with the simulation of situated agents [6], e.g., sim-

ulations of agents such as robots situated in a physical environment, or characters in
a computer game or interactive entertainment situated in a virtual environment. The
systems of interest typically involve large numbers (thousands or tens of thousands) of
agents in complex environments, e.g., individual-based ecological modelling or simula-
tions of massively multi-player online games, and the “agents” that we wish to simulate
may be models of agents (e.g., DEVS models [7]), or they may be actual implemented
agents in a simulated environment, or a mixture of the two. We therefore view the agents
as ‘black boxes’ and focus on the interaction of the agents through the medium of their
shared environment.

We adopt a standard parallel discrete event approach with optimistic synchronisa-
tion [4, 5]. Decentralised, event-driven distributed simulation is particularly suitable for
modelling systems with inherent asynchronous parallelism, such as agent-based sys-
tems. This approach seeks to divide the simulation model into a network of concurrent
Logical Processes (LPs), each maintaining and processing a disjoint portion of the state
space of the system. The LPs run asynchronously and each has its own local notion of
time within the simulation, referred to as its Local Virtual Time (LVT). State changes
are modelled as timestamped events. From an LP’s point of view, two types of events
are distinguished: internal events which have a causal impact only on the state variables
of the LP, and external events which may also have an impact on the states of other LPs.
External events are typically modelled as timestamped messages exchanged between the
LPs involved. In distributing the simulation across multiple processes, a key problem
is ensuring that there are no causality violations. An LP is said to adhere to the local

152 M. Lees et al.

causality constraint (LCC) if it processes all events in nondecreasing time stamp order.
If a message arrives in an LP’s past (as determined by its LVT) it must rollback its state
to the timestamp of the straggler event, and resume processing from that point. It must
also cancel any messages it sent with timestamps greater than that of the straggler event,
which may in turn initiate rollbacks on other LPs.

We model agents and their environment as Logical Processes. Each agent in the sys-
tem is modelled as a single Agent Logical Process (ALP) and objects and processes within
the agents’ environment are modelled as one or more Environment Logical Processes
(ELP)1. ALPs and ELPs are typically wrappers around existing simulation components.
They map to and from the sensor and action interfaces of the agent and environment
models to a common representation of the environment expressed in terms of objects
and attributes, and also provide support for rollback processing.

In general, the agents’ environment can be decomposed into ELPs in a number
of different ways. For example, the blocks in a simple ‘blocks world’ environment
could each be modelled as a separate ELP, as could the physics of stacking blocks
etc. Alternatively, all the blocks could form part of a single ‘blocks system’ ELP. The
appropriate ‘grain size’ of the simulation will depend both on the application and on
practical considerations, such as the availability of existing simulation code. While there
are obvious advantages in reusing part or all of an existing simulation, this can result in an
inappropriate grain size which makes it difficult to parallelise the model. For example,
modelling the environment as a single logical process can create a bottleneck in the
simulation which degrades its performance.2 The approach presented below is neutral
with respect to the decomposition of the environment into processes.

Each ALP and ELP has both public data and private data. Private data is data which is
not accessible to other LPs in the simulation, e.g., an agent’s model of the environment,
its current goals, plans etc. Public data is data which can, in principle, be accessed or
updated by other LPs in the simulation, e.g., the colour, size, shape, position etc. of an
object or agent. Public data is held in globally accessible locations or state variables,
while private data is local to a particular LP.ALPs and ELPs interact via events, modelled
as timestamped messages. The purpose of this interaction is to exchange information
regarding the values of those shared state variables which define the agent’s manifest
environment and the interfaces between the ELPs.3

There are several ways in which this interaction could be managed. One approach
would be to adopt a subscription-based approach to sensing, where the agent, via its
sensors, implicitly indicates the kind of data it is interested in, and data which matches
the subscription is sent to the agent whenever the environment changes. However there
are a number of problems with this approach. If the agent senses less frequently than the
environment changes, this needlessly propagates information to the agent. Moreover,

1 For simplicity, we do not consider fine-grained modelling of processes within an agent, i.e.,
distributing the agent model across multiple LPs.

2 Existing attempts to build distributed simulations of agent based systems have often adopted
such a centralised approach in which the agents’environment forms part of a central time-driven
simulation engine [8, 9, 1].

3 In what follows we shall use the generic term ‘LP’ to refer to both ALPs and ELPs, since, unless
otherwise noted, their behaviour is very similar.

Modelling Environments for Distributed Simulation 153

with optimistic synchronisation, environmental updates propagated to the agent may
be in its past or future. To receive only data with the “correct” timestamp, the agent’s
subscription must include the agent’s LVT and the subscription must be continuously
updated as the agent advances in time or rolls back. We therefore adopt a query based
approach to sensing, and use other techniques (see below) to reduce the cost of querying
the shared state.

In a conventional decentralised event-driven distributed simulation each LP maintains
its own portion of the simulation state and LPs interact with each other in a small number
of well defined ways. Even if the interactions are stochastic, the type of interaction and its
possible outcomes are known in advance. The topology of the simulation is determined
by the topology of the simulated system and its decomposition into LPs, and is largely
static.

In contrast, the interaction of agents in a multi-agent system is often hard to predict
in advance. Different kinds of agent have differing degrees of access to different parts of
the environment at different times. The degree of access is dependent on the range of the
agent’s sensors (read access) and the actions it can perform (write access). Moreover, in
many cases, an agent can effectively change the topology of the environment, for exam-
ple, by moving from one part of the environment to another.4 For example, if an agent is
“mobile”, then what it can sense at different times is a function of the actions it performed
in the past which is in turn a function of what it sensed in the past.As a result, it is difficult
to predict which state variables it can or will access without running the simulation.

It is therefore difficult to determine an appropriate topology for a MAS simulation
a priori. As a result, MAS simulations typically require a (very) large set of shared
variables which could, in principle, be accessed or updated by the agents (if they were
in the right position at the right time etc.).

3 Modelling the Shared State

We model the state of the simulation in terms of objects and attributes. We assume each
object in the simulation has a type, and each object type is associated with a number of
attributes. For example, a simple Tileworld [10] simulation might contain object types
such as tile and hole and attributes x-position, y-position etc. The simulation consists of a
variable number of objects whose state is defined by the value of their attributes. Events
generated by LPs read and write attribute values. Each attribute has a timestamp which
indicates the time at which the attribute acquired the value. The values of attributes can
be set independently of each other and at different times, i.e., updates to the environment
do not have to specify values for all the attributes of an object. The global state of the
simulation is split into the shared state: i.e., those attributes which are accessible to more
than one LP, and the local state of each LP (which for ease of exposition we assume to
be also modelled in terms of objects and attributes).

4 It may be the case that, at any particular time, there are parts of the environment that are not
accessible to any agent. However, if there is no sequence of actions that any agent can perform
from the initial state which makes some data accessible, then this data does not form part of
the shared state as defined here.

154 M. Lees et al.

We represent the simulation state as a set of tuple spaces. All LPs can access a global
tuple space containing the shared state of the simulation. The global tuple space consists
of a set of 6-tuples:

< object-type, object-id , attribute-type, attribute-id , value, timestamp > .

For example, the fact that a tile in the Tileworld has an x-position of 5 at time 25
might be represented

< tile, tile101, x-position, 101001, 5, 25 > .

As the simulation progresses, new tuples are added to the shared state, either because
a new object (and its corresponding attributes and values) has been created, or because
one of the LPs comprising the simulation has changed the value of an attribute of an
object. Note that the shared state may contain different values for the same attribute so
long as these have different timestamps. In addition, each LP has its own private tuple
space containing the private state of the LP.

LPs can perform a number of operations on the global tuple space:

request the value(s) of one or more attributes with a given timestamp;
add the value(s) of one or more attributes at a given timestamp; and
remove one or more attributes from a given timestamp.

add and remove operations are non-blocking. A request blocks until the requested tuples
are returned. Operations can also give rise to ‘exceptions’ which indicate that it was
impossible to complete the requested operation on the shared state. All operations occur
asynchronously and at the specified simulation time. However problems can arise when
an operation is performed in real time after another operation on the same attribute
which has a later timestamp, resulting in further processing of the global tuple space
and the private tuple space of one or more LPs. Such causality violations are a standard
problem with optimistic synchronisation approaches and our solution is discussed in
more detail below. The operations are atomic and may be arbitrarily interleaved. As a
convenience, the operations accept multiple arguments, but the processing of arguments
may be interleaved with other operations. As we will show, so long as the processing of
each argument is atomic, correct behaviour is guaranteed.

In the remainder of this section, we consider each operation in turn and briefly
describe their arguments, return values, exceptions and any side-effects on the shared
state and the state of other LPs.

3.1 Requests

For an LP to sense the world it firstly constructs a state query. The state query consists
of a query id and a set of query tuples. A query tuple is either a range query (query by
attribute value) or an id query (query by attribute id).

A range query is a list of 4-tuples of the form:

< object-type, attribute-type, value-range, timestamp > .

The value-range indicates the attribute values which are of interest (i.e., that match
the query). Range queries allow sensing of the environment. For example, to find the x-
positions of all tiles within 5 squares of an agent at time 50, we could use the range query

Modelling Environments for Distributed Simulation 155

< tile, x-position, ax − 5 ≤ x ≤ ax + 5, 50 > ,

where ax is the x-position of the agent at time 50.
An id query is a list of 2-tuples of the form:

< attribute-id , timestamp > .

Id queries allow query by reference, for example it allows an LP to obtain the current
value of one of its own public attributes or the current value of an attribute returned by
a range query. They are provided as an optimisation for those cases where the attribute
in question is guaranteed to persist until after the timestamp of the query.

Requests can give rise to a (possibly empty) set of tuples (in the case of range queries),
or, in the case of an attribute query, a single tuple or a “no such attribute” exception. The
tuple(s) contain the value(s) of the requested state variable(s) which were valid at the
time denoted by the request timestamp. If there is no tuple with a timestamp equal to
that of the request, for example, if the request timestamp lies between the timestamps of
two tuples or the query timestamp is greater than the timestamp of any matching tuple,
the request returns the tuple with the greatest timestamp prior to the timestamp of the
request. For example, if agent 1 has an x-position of 10 at time 50, evaluating the range
query above against the tuples

< tile, tile101, x-position, 101001, 6, 40 >
< tile, tile101, x-position, 101001, 7, 52 >

would return the tuple

< tile, tile101, x-position, 101001, 6, 40 > .

3.2 Add

When an LP creates a new object in the simulation or updates an attribute of an existing
object, it adds a new tuple to the shared state with the new value and timestamp, indicating
the simulation time at which the object was created or the attribute acquired the specified
value. Add operations are non blocking and do not return a result. However they may
give rise to an exception if objects of the specified object-type can’t have attributes of
the specified attribute-type. For simplicity, we assume that objects are only ever created
or deleted in their entirety, i.e., we cannot create an object without specifying all values
for all its attributes. Adding the first attribute to an object instance implicitly creates the
object in the shared state.

Assuming agents execute a sense, think, act cycle, an update will occur after the
range query request (s) generated by sensing. The agent (or ELP) will therefore have
a list of the sensed attributes and their ids, which can be used to construct the new
tuple. We assume that there is a delay between an agent’s sensing and action. In general,
it is impossible for an LP to know that the state of the environment that led to an add
operation still holds when the operation is performed. We therefore allow add operations
to be guarded. A guard is a predicate on the shared state in the form of a list of tuples
which must be true (i.e., the attributes must have the specified values at the timestamp
of the add) for the operation to be performed. A guard is effectively the precondition for

156 M. Lees et al.

the successful execution of an action in the environment. If the guard evaluates to false,
the add operation is not performed (with the exception that we ignore violations of the
precondition due to add operations performed by the same agent at the same timestamp).
For example, to prevent two (or more) agents pushing the same tile at the same time in
Tileworld, we can require that the tile is still where the agent sensed it (e.g., directly in
front of the agent) at the time of a push action before allowing the agent to update the
position of the tile.

We distinguish different categories of attributes depending on the types of updates
they admit. Static attributes are set once, e.g., when an object is created, and can’t be
changed during the simulation. Attributes which can be updated at most once at a given
timestamp are termed mutually exclusive attributes. For example, in Tileworld, we may
wish to prohibit two agents picking up a tile at the same time. Cumulative attributes can
be updated multiple times by different LPs at the same timestamp. For example, in the
Tileworld, several agents may be able to drop a tile into a hole at the “same” time, with
each operation decreasing the depth of the hole by one. All updates of static attributes
are ignored. If two or more LPs attempt to perform conflicting updates, i.e., attempt to
specify different values for a mutually exclusive attribute at a given timestamp, we apply
the update of the LP with the highest rank. The rank of an LP determines it’s priority
when attribute updates conflict. Ranks may reflect some property of the LP which is
relevant to the simulation, but in general are simply a way of ensuring repeatability. If
both LPs have the same rank then we choose an update arbitrarily (saving the random
seed to preserve repeatability). If the attribute has already been updated at this timestamp
by an LP with lower rank, this value is over-written and any LPs which read the previous
value are rolled back (see below).

3.3 Remove

Removing an attribute of an object in effect deletes the attribute from the specified time
forward. Subsequent request and add operations on the attribute with timestamps prior
to the specified timestamp proceed as normal. Range queries with timestamps later than
the specified timestamp give rise an empty list of result tuples. Attempting to add a new
attribute with a timestamp greater than the specified timestamp has no effect (i.e., it is
not possible to recreate an object id after it has been removed from the simulation). As
with creation, we assume that objects are only ever deleted in their entirety, with all
attributes being deleted at the same timestamp.

3.4 Rollbacks

Some sequences of operations by the LPs give rise to further processing of the shared
state and the private state of one or more LPs.

An add or remove operation with timestamp t which is processed in real time after
a request with timestamp t′, where t′ > t invalidates the request operation, and triggers
a rollback on all LPs which read the previous (interpolated) value of the attribute. A
rollback indicates that the set of tuples returned in response to the request was incorrect,
and that the LP should rollback its processing to the timestamp of the request and restart.
Rolling back an LP removes all tuples from the LP’s private tuple space which have a

Modelling Environments for Distributed Simulation 157

timestamp > t′ and resets the LP’s LVT to t′. The effect is as if the LP had just returned
from the original request operation (at timestamp t′), but this time with the ‘correct’value
of the attribute. For example, if agent 2 moves tile101 at time 47 so that it’s x-position
is now 5 but the tuple recording the update is not added to the global tuple space until
after the range query by agent 1 in section 3.1 has been performed, then agent 1 must be
rolled back to time 50 and restarted, returning from the request with the tuple

< tile, tile101, x-position, 101001, 5, 47 > .

A subsequent add operation with timestamp t′′, where t′′ < t < t′ can of course
cause further rollbacks on the LP. Rolling back an LP also cancels any add operations
on the shared state performed by the LP which have a timestamp > t′. This may in turn
invalidate requests made by other LPs, requiring them to rollback too.

Note that the presence of rollback obviates the need for coarse-grain atomic oper-
ations, i.e., each tuple argument to an add operation can be processed independently
of any others and may be arbitrarily interleaved with other operations such as request
operations.5 It is therefore possible for an LP to “see” an inconsistent version of the
shared state or for the guard conditions of an add operation to evaluate to true for some
orderings of operations on the shared state and false for others. When the updates are
finally made, the inconsistency will be detected and any affected LPs rolled back.

4 Distributing the Shared State

A naive implementation of the shared state, e.g., in which the shared state is maintained
by a single process, is a potential bottleneck in a MAS simulation. In this section we
present an approach to the efficient distribution of the shared state.

The shared state of the simulation is stored in state variables. Each state variable
corresponds to a set of tuples, namely those that have the same object-type, object-id ,
attribute-type and attribute-id .6 We assume that each LP is capable of generating and
responding to a finite number of event types, and a specification of the possible input and
output event types forms the interface between the LPs. Different types of events will
typically have different effects on the shared state, and, in general, events of a given type
will affect only certain types of state variables (all other things being equal). For example,
in [11], we showed that for a simple predator and prey simulation, the probability of a
given state variable being accessed by more than 3 agents was fairly small, and agents
tend to access the same state over time.

Another way of expressing this is to say that different types of event have different
spheres of influence within the shared state. ‘Sphere’ is used here metaphorically, to
indicate those parts of the shared state immediately affected by an instance of an event
of a particular type with a given timestamp. More precisely, we define the ‘sphere of
influence’ of an event as the set of state variables read or updated as a consequence of
the event.

5 While this isn’t a correctness issue, it may be an efficiency issue.
6 In practice, not all tuples need to be stored in state variables, e.g., if a tuple has a timestamp

lower the LVT of any LP it is inaccessible within the simulation and can be garbage collected.

158 M. Lees et al.

We can use the spheres of influence of the events generated by each LP to derive an
idealised decomposition of the shared state into logical processes (see [11] for details).
We define the sphere of influence of an LP pi over the time interval [t1, t2], s(pi), as
the union of the spheres of influence of the events generated by the LP over the interval.
Intersecting the spheres of influence for each event generated by the LP gives a partial
order over sets of state variables for the LP over the interval [t1, t2], in which those sets of
variables which have been accessed by the largest number of events come first, followed
by those less frequently accessed, and so on. The rank of a variable vj for LP pi over the
interval [t1, t2], r(vj , pi) is the number of events in whose sphere of influence vj lies.

Intersecting the spheres of influence for each LP gives a partial order over sets of
state variables, the least elements of which are those sets of state variables which have
been accessed by the largest groups of LPs over the interval [t1, t2]. This partial order
can be seen as a measure of the difficulty of associating variables with a particular ALP
or ELP: the state variables which are members of the sets which are first in the order
are accessed by the largest number of ALPs and/or ELPs, whereas those sets of state
variables which come last are accessed by only a single LP. (Assuming that all variables
have the same rank.)

For example, suppose there are three ALPs, a1, a2 and a3, and five variables,
v1, . . . , v5. The first ALP generates events which read and update only the variables
v1 and v2; its sphere of influence therefore is {v1, v2}. Similarly, let the sphere of influ-
ence of a2 be {v2, v3} and the sphere of influence of a3 be {v4, v5}. The variable v2 is
accessed by two agents, hence {v2} is the least in the ordering, followed by {v1}, {v3}
and {v4, v5}.

To minimise the computational and communication loads, any approach to the de-
composition of the shared state into logical processes should, insofar as is possible,
reflect this ordering and grouping of variables. In the example above, we would expect
the state to be partitioned into {v1}, {v3}, {v4, v5} and {v2}. {v1}, {v3} and {v4, v5}
can be located close (in a computational sense) to the ALPs in whose sphere of influence
the variables lie, i.e., a1, a2 and a3 respectively. {v2} is shared by a1 and a2 and should
be allocated to an LP which is equidistant (in a computational sense) from a1 and a2.
However, any implementation can only approximate this idealised decomposition, since
calculating it requires information about the global environment, and obtaining this in-
formation in a distributed environment is costly. Moreover, this ordering will change
with time, as the state of the environment and the relative number of events of each type
produced by the LPs changes.

In the remainder of this section, we describe a prototype implementation of these
ideas which distributes the state according to the spheres of influence of the LPs in the
simulation. The partitioning of the shared state is performed dynamically, in response
to the events generated by the ALPs and ELPs during the simulation.

4.1 CLPs

The decomposition of the state is achieved by means of an additional set of Logical Pro-
cesses, namely Communication Logical Processes (CLPs). The CLPs form a complete
binary tree with theALPs and ELPs as the leaves and each CLP maintains a portion of the
state which is associated with theALPs/ELPs which are below it in the tree (see Figure 1).

Modelling Environments for Distributed Simulation 159

ALP ELP

CLP

CLP

ALP ELP

CLP

CLP CLPCLP

CLP

Fig. 1. The tree of CLPs

At any given point in the simulation, each CLP maintains a disjoint subset of the state
variables and the interaction of ALPs and ELPs is via the variables maintained by the
CLPs. In general, different CLPs will maintain different numbers of state variables. The
aim is to minimise both computational and communication loads. Frequently accessed
data should therefore be maintained by CLPs close to the ALPs which access it. The
tree of CLPs provides a large number of local caches for data accessed by a single agent
small groups of agents. Less frequently accessed data can be stored further away. In the
limit, the root node may hold, e.g., 90% of the shared state (swapped out) — so long as

Value: 34
Start Time: 1

Read List: [(Ag1,2),(Ag2,3)]

Agent: Ag1
End Time: 4

Value: 38 Agent: Ag1
End Time:

Read List: [(Ag2,9),(Ag3,6),(Ag4,5)]

Start Time: 4

Value: 30
Start Time: 2

Agent: Ag1
End Time: 5

Read List: [(Ag1,2),(Ag2,3)] Read List: [(Ag1,2),(Ag2,3)]

Agent: Ag1Value: 39
Start Time: 5 End Time:

Shared State

v
j

v
k

i

v
y

v
z

Write Periods

Value: 3 Agent: Ag1
End Time:Start Time: 2

Read List: [(Ag1,21),(Ag3,31)]

Value: 26
Start Time: 1

Agent: Ag1
End Time: 2

Read List: [(Ag1,2)]

v

S
tate V

ariables

Value: 34
Start Time: 1

Read List: [(Ag1,2),(Ag2,3)]
Agent: Ag1
End Time: 4

Value: 38 Agent: Ag1
End Time:

Read List: [(Ag2,9),(Ag3,6),(Ag4,5)]

Start Time: 4

Value: 30
Start Time: 2

Agent: Ag1
End Time: 5

Read List: [(Ag1,2),(Ag2,3)] Read List: [(Ag1,2),(Ag2,3)]
Agent: Ag1Value: 39

Start Time: 5 End Time:

Shared State

v
j

v
k

i

v
y

v
z

Write Periods

Value: 3 Agent: Ag1
End Time:Start Time: 2

Read List: [(Ag1,21),(Ag3,31)]

Value: 26
Start Time: 1

Agent: Ag1
End Time: 2

Read List: [(Ag1,2)]

v

S
tate V

ariables

P
or

t

PortPor
t

Fig. 2. The structure of a CLP

160 M. Lees et al.

this is never or very infrequently accessed, the load on the root node may be similar to
that on (leaf) CLPs with small numbers of frequently accessed variables.

Read and write operations on state variables are effectively mapped into request and
add operations on tuples in the global tuple space. Each tuple corresponds to a write
period of the appropriate state variable (see Figure 2).A write period is an interval during
which an attribute maintains a particular value. Each write period stores its start and end
time, the value of the state variable over that time period, the LP which performed the
write and a list of LPs which read the state variable over the time period, together with
the logical times at which they read the variable. New write periods are created when
an LP performs an add operation, i.e., when the state variable concerned is written to.
This splits an existing write period, and triggers a rollback on any LPs which read the
previous version of the variable at a logical time later than the start of the new write
period (see [12] for details).

4.2 Ports

CLPs communicate with their neighbours in the tree via ports. Each port holds infor-
mation about the ranges of attribute values maintained by CLPs beyond the port in the
form of 4-tuples:

< object-type, attribute-type, value-range timestamp-range > .

For example, in a Tileworld simulation, a port tagged with object-type tile, attribute-
type x-position value-range 10–20 and timestamp-range 50–100 would indicate that state
variables holding x positions of tiles with values in the range 10 to 20 and timestamps
between 50 and 100 are held in CLPs beyond this port. Initially, the value-range for
each object and attribute type at each port is “all values” for all timestamp ranges. As
range queries are processed (initially by forwarding the query to all CLPs in the tree),
a CLP acquires information about the kinds of attributes that lie beyond each port by
analysing the responses to the range query by the neighbouring CLPs. This provides a
simple form of ‘lazy’ interest management, which avoids repeated traversal the whole
tree when processing requests, e.g., when an agent repeatedly senses the environment.
In addition, each port also holds information about the attribute instances maintained by
other CLPs that can be reached via the port. This routing information is cached during
the processing of range queries, and allows a CLP to forward reads and writes of state
variables that it does not maintain to the appropriate CLP. Where the port leads to anALP
or an ELP, the port information is empty (since all public information in the simulation
is held in the CLPs).

Updating the value of a state variable may involve updating the range information of
the ports leading to the CLP which manages the variable. Each CLP keeps a record of
all queries it has received since the last GVT computation together with the port through
which the query arrived at the CLP. All add operations are checked against this query
history, and, if the tuple matches a previously evaluated query, the add is propagated back
along the path of the query to update the port information. When the traversal reaches
the ALP that initiated the query this triggers a rollback, as the first time the query was

Modelling Environments for Distributed Simulation 161

evaluated, it returned too few tuples.7 Conversely, if a tuple matches no query in the
query record, then no ALP has ever queried this attribute value at this timestamp, and
there is no need to propagate the tuple beyond the current CLP.

4.3 Load Balancing

As well as storing state variables and enabling communication via ports, the CLPs also
facilitate load balancing. As the total number and distribution of instances of each event
type generated by an ALP/ELP varies, so the partial order over the spheres of influence
changes, and the contents of the CLPs must change accordingly to reflect theALPs/ELPs’
current behaviour and keep the computational and communication loads balanced. This
may be achieved in two ways, namely by changing the position of the ALPs/ELPs, and
by moving the state variables from one CLP to another. In general, it is easier to migrate
the shared state than the agents, and our strategy is to bring the environment close to the
agents (in a computational sense).

To achieve this we have developed a load balancing scheme in which the cost of
accessing state variables maintained at each CLP is used in making load management
decisions. We define the cost of accessing a state variable vj by an ALP/ELP pi as the
number of times vj was accessed by pi times the number of CLPs that must be traversed
to reach vj during the time interval [t1, t2]. The access cost for a CLP is therefore:

∑
j

∑
i

(r(vj , pi) × l(vj , pi))

where r(vj , pi) is the number of accesses by each ALP/ELP pi to each variable vj

maintained by the CLP, and l(vj , pi) is the number of CLPs traversed to reach vj from
pi. Periodically, each CLP chooses a set of state variables it maintains, which, if migrated
to a neighbouring CLP, would reduce the total access cost at the originating CLP. This
simple load shedding scheme is complemented by a “reverse migration” phase which
ensures that the load on any single CLP does not exceed a maximum value.

State variables are considered for migration when their access cost over the last
period is greater than a preset threshold value. (With a cost threshold of zero, all variables
maintained at the CLP are potential migration candidates.) Once the set of migration
candidates has been determined, the CLP chooses to which of the neighbouring CLPs
each migration candidate should be pushed (if any). For a variable to be pushed to a
neighbouring CLP, the number of accesses to the state variable arriving through the port
leading to the neighbouring CLP must exceed the total number of accesses to the variable
arriving through other ports by a predetermined access threshold. To avoid the oscillation
of a state variable between the two CLPs, the CLP initiating the load balancing process
must check that the cost of accessing a state variable at its new location will be reduced
(assuming that the pattern of accesses in the future is similar to that in the present),
before pushing the load.

A state variable which satisfies both these conditions is migrated to the CLP respon-
sible for the majority of the accesses to the variable over the last period. This simple

7 Note that remove operations do not require special processing: the removed tuple must have
been read by the query and the reading ALP is recorded in the write period.

162 M. Lees et al.

strategy guarantees that the computational load on the “pushing” CLP and the overall
communication load on the system will be lower following migration. However it can
result in excessive computational loads on the “receiving” CLPs. To avoid this, we allow
the receiving CLP to “swap” load with the pushing CLP. If the difference between the
computational load of the pushing and receiving CLPs is greater than a predetermined
load threshold, the receiving CLP may chose to swap some state variables with the push-
ing CLP. However, the receiving CLP will only chose to a swap state variable if doing so
will reduce the cost of accessing that variable. A state variable is selected for swapping if
and only if the majority of its accesses are through the port from which the pushed load
was received. We use a swap load selection criterion in which the difference between the
swap load (total access on the selected swappable variables) and the initial push load is
less than or equal to the load threshold.

When load balancing is performed, the range information for the port through which
the state is migrated must be updated to record the fact that attribute values held in the
pushed variables are now accessible via the port. In addition, for the receiving CLP
to correctly process new tuples in future, it must know what assumptions other CLPs
would otherwise make about its contents based on previous queries. Any queries which
match the state being pushed must therefore be copied from the pushing CLP to the
receiving CLP.

5 Related Work

The model of the shared state presented above has some similarities with tuple space-
based approaches [13]. For example, the add operator is similar to the out operator and
the request and remove operators are similar to non-blocking rdp and inp operators.
There has also been considerable work on distributed tuple spaces, for example systems
such as LIME [14] and EgoSpaces [15], support distribution and the propagation of
tuples from one tuple space to another.

However there are important differences. In Linda, matching is only on the position
and type of a field (though some tuple space approaches, e.g., [16, 14, 15], support simple
range matching in templates). Nor is it possible to guard an out operation, or easily
construct such an atomic operation from the existing primitives. The key difference,
however, is the model of time. In PDES, operations occur asynchronously but at a
specific virtual time. As a result, we have to deal with conflicting updates with the same
timestamp. We also have to manage the relationship between virtual and real time, for
example, recording which request operations have been performed so that we can detect
straggler updates and rollback. In contrast, coordination languages don’t have an explicit
model of time built into the semantics. Some implementations, e.g., [16, 17], support
leases and/or transactions, but these are insufficient to implement guarded updates and
rollback. In [18] a framework is proposed which allows, e.g., timestamping, rollback,
and atomic transactions (as user-defined operations), but as far as we are aware, no
distributed implementation exists.

In addition to the differences in the operations supported by existing tuple space
models, scalability is also an issue. For example, LIME uses a subscription-like model to
implement query operations on (remote) tuple spaces, in which the middleware registers

Modelling Environments for Distributed Simulation 163

a ‘weak reaction’ on a remote tuple space which is triggered when a tuple matching a
pattern is added to the remote tuple space. However this approach potentially requires
a weak reaction to be registered with every remote tuple space for every query. In
EgoSpaces, which in part builds on the work on LIME, ’network constraints’ limit
consideration to “nearby” tuple spaces, i.e., to a subnet of the network. While such
a network metric has a natural interpretation in the ad hoc mobile environments for
which EgoSpaces was developed, there is no obvious corresponding metric in a MAS
simulation, and it is not clear that the LIME/EgoSpaces model would scale to the very
large numbers of tuple spaces required for a large MAS simulation, where, in principle,
any agent may sense and update any part of its environment.

The approach described above also has some similarities with the ant algorithm
approach outlined in [19] and with the TOTA middleware described in [20]. In [19]
templates and tuples are modelled as ants which search a landscape of tuple servers for
matching tuples or templates respectively, leaving trails to the locations for successful
matches. In TOTA, the propagation of tuples from tuple space to tuple space across a
network is determined by propagation rules which form part of the tuple’s definition. This
approach is very flexible and can be used to implement some of the features described
above. For example, in TOTA, tuples can be used to create a routing overlay structure
in a way somewhat similar to the caching of port information by a CLP during the
processing of a range query. However, in TOTA, routing has to be programmed at the
user level using propagation rules, and TOTA provides no direct support for guarded
updates, virtual time or rollback.

In the simulation community, the efficient distribution of updates has received more
attention, particularly in the context of large scale real-time simulations where it is
termed Interest Management. Interest Management techniques utilise filtering mecha-
nisms based on interest expressions (IEs) to provide the processes in the simulation with
only that subset of information which is relevant to them (e.g., based on their location
or other application-specific attributes). Special entities in the simulation, referred to as
Interest Managers, are responsible for filtering generated data and forwarding it to the
interested processes based on their IEs [21].

Various Interest Management schemes have been devised, utilising different commu-
nication models and filtering schemes. In most existing systems, Interest Management
is realised via the use of IP multicast addressing, whereby data is sent to a selected
subnet of all potential receivers. A multicast group is defined for each message type,
grid cell (spatial location) or region in a multidimensional parameter space in the sim-
ulation. Typically, the definition of the multicast groups of receivers is static, based
on a priori knowledge of communication patterns between the processes in the sim-
ulation [22, 23, 24, 25, 26]. For example, the High Level Architecture (HLA) utilises
the routing space construct, a multi-dimensional coordinate system whereby simulation
federates express their interest in receiving data (subscription regions) or declare their
responsibility for publishing data (update regions) [27]. In existing HLA implementa-
tions, the routing space is subdivided into a predefined array of fixed size cells and each
grid cell is assigned a multicast group which remains fixed throughout the simulation;
a process joins those multicast groups whose associated grid cells overlap the process
subscription region.

164 M. Lees et al.

Static, grid-based Interest Management schemes have the disadvantage that they do
not adapt to the dynamic changes in the communication patterns between the processes
during the simulation and are therefore incapable of balancing the communication and
computational load, with the result that performance is often poor. Furthermore, in order
to filter out all irrelevant data, grid-based filtering requires a reduced cell size, which in
turn implies an increase in the number of multicast groups, a limited resource with high
management overhead. Some systems, such as JPSD [24] and STOW-E [28] allowed
a degree of dynamism in their filtering schemes, and, more recently, there have been
attempts to define alternative dynamic schemes for Interest Management concentrating
mainly on the dynamic configuration of multicast groups within the context of HLA. For
example, Berrached et al. [29] examine hierarchical grid implementations and a hybrid
grid/clustering scheme of update regions to dynamically reconfigure multicast groups
while Morse et al. [30] report on preliminary investigations on a dynamic algorithm
for dynamic multicast grouping for HLA. The Joint MEASURE system [31, 32, 33] is
implemented on top of HLA and utilises event distribution and predictive encounter
controllers to efficiently manage interactions among entities. However, despite these
efforts, the problem of dynamic interest management remains largely unsolved.

In contrast, our approach is not confined to grids and rectangular regions of multi-
dimensional parameter space and does not rely on the support provided by the TCP/IP
protocols. Rather, the shared state is distributed dynamically based on the spheres of
influence of the ALPs and ELPs in the simulation. In addition, our approach aims
to exploit this decomposition in order to perform load balancing. Although load bal-
ancing has been studied extensively in the context of conventional distributed simula-
tions [34, 35, 36, 37, 38, 39], it has received very little attention in relation to Interest
Management, and work in this area to date is only preliminary [21, 40, 41, 42].

6 Conclusion and Further Work

In this paper, we have presented a model of the environment of a multi-agent system and
an approach to the distributed simulation of MAS environments based on this model. Our
model addresses the problems of efficient sensing, parallel actions and action conflicts,
and the efficient distribution of the resulting shared state of the simulation. The work
reported is still at a preliminary stage. To date, we have implemented the core of the
CLPs including the rollback mechanism and calculation of virtual time [43] and load
balancing [44] and are currently working on the implementation of interest management.
Initial experiments with the rollback mechanism are encouraging, and show a reduction
in the number of rollbacks compared to other approaches in the literature which rollback
on every straggler event [12].

In the short term, our focus will be on completing the implementation and evaluating
its performance relative to conventional PDES approaches. However in the longer term,
it would be interesting to explore the application of the ideas described above to MAS
environments in general. With the exception of our model of time (which is local to the
agent), the concerns which we address, i.e., the tuple space-like model of the environment
state, the operations we can perform on it (and the associated issues of simultaneity and
guarded updates) and its efficient distribution, are relevant to environments for MAS in

Modelling Environments for Distributed Simulation 165

general. Much of the work on modelling of state and action and, at the implementation
level, on distribution and routing could potentially carry over to the modelling and
implementation of (non-simulated) environments.

Acknowledgements

This work is part of the PDES-MAS project8 and is supported by EPSRC research grant
No. GR/R45338/01.

References

1. Anderson, J.: A generic distributed simulation system for intelligent agent design and evalu-
ation. In Sarjoughian, H.S., Cellier, F.E., Marefat, M.M., Rozenblit, J.W., eds.: Proceedings
of the Tenth Conference on AI, Simulation and Planning, AIS-2000, Society for Computer
Simulation International (2000) 36–44

2. Schattenberg, B., Uhrmacher, A.M.: Planning agents in JAMES. Proceedings of the IEEE
89 (2001) 158–173

3. Gasser, L., Kakugawa, K.: MACE3J: Fast flexible distributed simulation of large, large-grain
multi-agent systems. In: Proceedings of AAMAS-2002, Bologna (2002)

4. Ferscha, A., Tripathi, S.K.: Parallel and distributed simulation of discrete event systems.
Technical Report CS.TR.3336, University of Maryland (1994)

5. Fujimoto, R.: Parallel discrete event simulation. Communications of the ACM 33 (1990)
31–53

6. Ferber, J.: Multi-Agent Systems. Addison Wesley Longman (1999)
7. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. 2nd edn. Aca-

demic Press (2000)
8. Baxter, J., Hepplewhite, R.T.: Broad agents for intelligent battlefield simulation. In: Pro-

ceedings of the 6th Computer Generated Forces and Behavioural Representation, Institute of
Simulation and Training (1996)

9. Vincent, R., Horling, B., Wagner, T., Lesser, V.: Survivability simulator for multi-agent adap-
tive coordination. In: Proceedings of the International Conference on Web-Based Modeling
and Simulation 1998 (WMC’98). (1998)

10. Pollack, M.E., Ringuette, M.: Introducing the Tileworld: Experimentally evaluating agent
architectures. In: National Conference on Artificial Intelligence. (1990) 183–189

11. Logan, B., Theodoropoulos, G.: The distributed simulation of multi-agent systems. Proceed-
ings of the IEEE 89 (2001) 174–186

12. Lees, M., Logan, B., Theodoropoulos, G.: Time windows in multi-agent distributed simu-
lation. In: Proceedings of the 5th EUROSIM Congress on Modelling and Simulation (Eu-
roSim’04). (2004)

13. Carriero, N., Gelernter, D.: Linda in context. Communications of theACM 32 (1989) 444–458
14. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A middleware for physical and logical

mobility. In: Proceedings of the the 21st International Conference on Distributed Computing
Systems (ICDCS 2001), IEEE Computer Society (2001) 524–533

15. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile environ-
ments. SIGSOFT Softw. Eng. Notes 27 (2002) 21–30

8 http://www.cs.bham.ac.uk/research/pdesmas

166 M. Lees et al.

16. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Systems Journal
37 (1998) 454–474

17. Sun Microsystems: JavaSpaces service specification v1.1.
http://www.sun.com/software/jini/specs/js1 1.pdf (2000) (verified 01/04/2004).

18. Merrick, I., Wood, A.: Coordination with scopes. In: Proceedings of the 2000 ACM Sympo-
sium on Applied Computing, ACM Press (2000) 210–217

19. Menezes, R., Tolksdorf, R.: A new approach to scalable lind-sysatems based on swarms.
In: Proceedings of the 2003 ACM Symposium on Applied Computing, ACM Press (2003)
375–379

20. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: A middleware for context-aware
computing in dynamic networks (2003)

21. Morse, K.L.: Interest management in large-scale distributed simulations. Technical Report
ICS-TR-96-27 (1996)

22. Smith, J., Russo, K., Schuette, L.: Prototype multicast IP implementation in ModSAF. In:
Proceedings of the Twelfth Workshop on Standards for the Interoperability of Distributed
Simulations. (1995) 175–178

23. Mastaglio, T.W., Callahan, R.: A large-scale complex virtual environment for team training.
IEEE Computer 28 (1995) 49–56

24. Macedonia, M., Zyda, M., Pratt, D., Barham, P.: Exploiting reality with multicast groups: a
network architecture for large-scale virtual environments. In: Virtual Reality Annual Interna-
tional Symposium. (1995) 2–10

25. Calvin, J.O., Chiang, C.J., Van Hook, D.J.: Data subscription. In: Proceedings of the Twelfth
Workshop on Standards for the Interoperability of Distributed Simulations. (1995) 807–813

26. Steinman, J.S., Weiland, F.: Parallel proximity detection and the distribution list algorithm.
In: Proceedings of the 1994 Workshop on Parallel and Distributed Simulation. (1994) 3–11

27. Defence Modeling and Simulation Office: High Level Architecture RTI Interface Specifica-
tion, Version 1.3. (1998)

28. Van Hook, D., Calvin, J., Newton, M., Fusco, D.: An approach to DIS scaleability. In: Proceed-
ings of the 11th Workshop on Standards for the Interoperability of Distributed Simulations.
(1994) 347–356

29. Berrached, A., Beheshti, M., Sirisaengtaksin, O., de Korvin, A.: Alternative approaches to
multicast group allocation in HLA data distribution. In: Proceedings of the 1998 Spring
Simulation Interoperability Workshop. (1998)

30. Morse, K.L., Bic, L., Dillencourt, M., Tsai, K.: Multicast grouping for dynamic data distribu-
tion management. In: Proceedings of the 31st Society for Computer Simulation Conference
(SCSC ’99). (1999)

31. Hall, S.B., Zeigler, B.P., Sarjoughian, H.: Joint MEASURE: Distributed simulation issues in
a mission effectiveness analytic simulator. In: Proceedings of the Simulation Interoperability
Workshop, Orlando, FL (1999)

32. Hall, S.B.: Using Joint MEASURE to study tradeoffs between network traffic reduction
and fidelity of HLA compliant pursuer/evader simulations. In: Proceedings of the Summer
Simulation Conference, Vancouver, Canada, Society for Computer Simulation (2000)

33. Sarjoughian, H.S., Zeigler, B.P., Hall, S.B.: A layered modeling and simulation architecture
for agent-based system development. Proceedings of the IEEE (2000)

34. Burdorf, C., Marti, J.: Load balancing strategies for Time Warp on multi-user workstations.
The Computer Journal 36 (1993) 168–176

35. Glazer, D.W., Tropper, C.: On process migration and load balancing in Time-Warp. IEEE
Transactions on Parallel and Distributed Systems 3 (1993) 318–327

36. Goldberg, A.: Virtual time synchronisation of replicated processes. In: Proceedings of 6th
Workshop on Parallel and Distributed Simulation, Society for Computer Simulation, Society
for Computer Simulation (1992) 107–116

Modelling Environments for Distributed Simulation 167

37. Reiher, P.L., Jefferson, D.: Dynamic load management in the Time-Warp operating system.
Transactions of the Society for Computer Simulation 7 (1990) 91–120

38. Schlagenhaft, R., Ruhwandl, M., Sporrer, C., Bauer, H.: Dynamic load balancing of a multi-
cluster simulation on a network of workstations. In: Proceedings of 9th Workshop on Parallel
and Distributed Simulation, Society for Computer Simulation, Society for Computer Simu-
lation (1995) 175–180

39. Carothers, C., Fujimoto, R.: Background execution of Time-Warp programs. In: Proceedings
of 10th Workshop on Parallel and Distributed Simulation, Society for Computer Simulation,
Society for Computer Simulation (1996)

40. Messina, P., Davis, D., Brunette, S., Gottshock, T., Curkendall, D., Ekroot, L., Miller, C.,
Plesea, L., Craymer, L., Siegel, H., Lawson, C., Fusco, D., Owen, W.: Synthetic forces
express: A new initiative in scalable computing for military simulation. In: Proceedings of
the 1997 Spring Simulation Interoperability Workshop, IST (1997)

41. White, E., Myjak, M.: A conceptual model for simulation load balancing. In: Proceedings of
the 1998 Spring Simulation Interoperability Workshop. (1998)

42. Myjak, M., Sharp, S., Shu, W., Riehl, J., Berkley, D., Nguyen, P., Camplin, S., Roche, M.:
Implementing object transfer in the HLA. Technical report (1999)

43. Lees, M., Logan, B., Theodoropoulos, G.: Adaptive optimistic synchronisation for multi-
agent simulation. In Al-Dabass, D., ed.: Proceedings of the 17th European Simulation Mul-
ticonference (ESM 2003), Delft, Society for Modelling and Simulation International and
Arbeitsgemeinschaft Simulation, Society for Modelling and Simulation International (2003)
77–82

44. Oguara, T.: Load balancing in distributed simulation of agents. Thesis Report 5, School of
Computer Science, University of Birmimgham (2004)

Supporting Context-Aware Interaction in
Dynamic Multi-agent Systems

Christine Julien1 and Gruia-Catalin Roman2

1 Department of Electrical and Computer Engineering,
The University of Texas at Austin

c.julien@mail.utexas.edu
2 Department of Computer Science and Engineering,

Washington University in Saint Louis
roman@wustl.edu

Abstract. The increasing ubiquity of mobile computing devices has
made mobile ad hoc networks an everyday occurrence. Applications in
these networks are commonly structured as a logical network of mobile
agents that coordinate with each other to achieve their goals. In these
highly dynamic multi-agent systems, the multitude of devices provides a
varied and rapidly changing context in which agents must learn to op-
erate. Successful end-user applications will not only learn to handle dy-
namic conditions, but will take advantage of the wide variety of available
information and resources. Any environment that supports agents and
their interactions must facilitate flexible communication mechanisms.
Such protocols for enabling an application agents task of gathering con-
textual information must function in a timely and adaptive fashion. This
paper presents a protocol for mediating these context-based interactions
among mobile agents. We present an implementation and show how it
facilitates information exchange among mobile application agents. We
also provide an analysis of the tradeoffs between consistency and range
of context definitions in highly dynamic ad hoc networks.

1 Introduction

In large-scale multi agent systems, an application agent must adapt its behavior
to a constantly changing environment defined by a multitude of mobile com-
puting devices supporting a variety of other application agents and services.
Mobile networks form opportunistically and change rapidly in response to the
movement of the devices and agents that define the network. To communicate,
applications in such a network commonly use ad hoc routing protocols (e.g.,
DSDV [1], DSR [2], AODV [3]) that deliver messages between a known source
and destination using intermediate devices as routers. Ad hoc multicast routing
protocols require devices to register as receivers for a specific multicast address.
The network maintains a multicast tree [4, 5] or mesh [6, 7] for delivering mes-
sages to registered receivers.

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 168–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 169

Directly applying these routing techniques to gathering the context infor-
mation needed by a particular application agent (or just “agent”) poses several
drawbacks. In both unicast and multicast routing, the paths along which mes-
sages are delivered may extend across the entire network. As the ubiquity of mo-
bile devices increases, mobile networks may grow very large, have large network
diameters, and support increasing numbers of coordinating agents. Consider a
network composed of cars on a highway. Cars may be transitively connected for
hundreds of miles, but it is generally not necessary or desirable for an application
to communicate at great distances. Each car may support several agents, but
many application agents require only local interactions, e.g., an agent may be
responsible for gathering local traffic information for a particular driver. In addi-
tion, for traditional routing protocols to function, senders and receivers require
explicit knowledge of each other. Often, however, an application has no a priori
knowledge about the agents and services with which it will want to interact,
since components in the networks move at will, and agents or services that are
encountered once may never be encountered again. Supporting context-aware
agents in this unpredictable environment requires reevaluating what applica-
tion agents need from underlying protocols and providing solutions tailored to
these needs.

Emerging applications for this environment (like the traffic example above)
focus on using application agents to provide context information to the user. This
context can be defined by physical properties of the device (heretofore referred to
as a “node”) or other devices in the environment and by information or services
available on them. For example, a context-aware tour guide [8, 9] may interact
with nearby kiosks to display locally relevant tourist information. Cars on a
highway may interact to gather traffic information about their intended routes.
In any of these cases, application agents cooperate to gather the information
presented to the user. This information defines the operating context of the
application, which differs for each application. The scope of interaction is driven
by the instantaneous needs of applications, which change over time.

We focus on providing a protocol to support an agent’s ability to specify what
context information it needs from its environment and to gather that informa-
tion in a manner that adapts to environmental changes. Because the network
is constantly being reshaped, an agent’s requests must be evaluated in a timely
fashion to ensure the freshness of the information. Previous work resulted in the
Content-Based Multicast model (CBM) [10], which focuses on disseminating in-
formation collected by sensors. In general, this model is tailored for distributing
information about a (possibly mobile) threat to interested parties. The dissemi-
nation pattern in CBM is based on the relative movement patterns of the threat
being sensed and the interested parties. Mobile nodes that sense the presence
of a threat push information about the threat in the direction of its movement.
At the same time, mobile components pull information about threats present in
their direction of travel. This combination of both push and pull actions allows
this multicast protocol to adjust to dynamic components with varying speeds.

170 C. Julien and G.-C. Roman

While the CBM model addresses needs of context aware applications, it is
tailored to a specific class of context-aware applications. It is a protocol tai-
lored to dissemination of mobile threats to mobile parties. Our approach focuses
on a more general treatment of context that caters to the varying and unpre-
dictable needs of applications in heterogeneous mobile networks. While tradi-
tional approaches to context-aware computing either deal with specific types of
context [10, 11] or only context that is sensed by the local node [8, 9, 11, 12], we
extend the notion of context to include information available in a region of the
network surrounding the node where the requesting agent resides. The protocol
constructs and dynamically maintains a tree over a subnet of neighboring nodes
and links whose attributes contribute to an application agent’s specific definition
of context. Here we present the first protocol implementing the Network Abstrac-
tions model [13]. We explore the protocol in detail, focusing on its practicality,
implementation, and performance in an effort to quantify the guarantees that
can be associated with extended contexts in dynamic mobile networks.

Given our approach, the environment of an agent is defined by the world
surrounding the agent and the capabilities the surroundings contain. This in-
cludes the ability to communicate with other agents on other network nodes
and the ability to access data owned by the agents. The context of an agent
is more specific and is defined as exactly the data that the agent is interested
in (for the purpose of its application) at a particular moment in time. What
is defined to be part of the context at any time is influenced by the agent’s
environment.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the Network Abstractions model and protocol. Section 3 discusses
our implementation. Section 4 provides an analysis of the model through simu-
lation. Conclusions appear in Section 5.

2 Network Abstractions Overview

Today’s dynamic mobile networks contain many nodes and links with varying
properties which define the context for any individual agent in the network. The
behavior of an adaptive agent depends on this continuously changing context.
This context definition is broader than traditional definitions that include only
local information. This has the potential to greatly increase the amount of con-
text information available, and so an application agent desires the ability to
precisely specify its context based on the properties of nodes and links in the
network. For example, a network on a highway might extend for hundreds of
miles, but an agent operating on behalf of a driver may be interested only in
gas stations within five miles. Our approach allows the corresponding agent’s
context specification to remain as general and flexible as possible while ensuring
the feasibility of the protocol to dynamically compute the context. The Network
Abstractions model provides an agent on a particular node, called the reference,
the ability to specify a context that spans a subset of the network.

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 171

Fig. 1. A Network Abstraction defined to include all nodes within three hops of the
reference (shown in gray)

2.1 Model Overview

As discussed previously, an adaptive application in a mobile network operates
optimally only over a context tailored to its specific needs. The Network Abstrac-
tions model views this context as a subnet surrounding the application agent.
Consider the example network shown in Fig. 1. In this network, the reference
node where the agent is running is shown in gray. The links shown are available
communication links. This figure represents the agent’s definition of a context
that includes all nodes within fewer than three hops. The number inside each
node is its shortest distance from the reference in terms of number of hops. The
dashed line labeled “D=3” represents the agent’s bound on the context (three
hops), while the darkened links indicate paths in a tree that define the context.
By defining such a context, the agent has restricted its operation to a subnet of
the network that is locally relevant to its desired functionality.

This example uses a simple definition of “distance” (number of hops), but this
approach can be generalized to include distance definitions tailored to unique
applications. We will provide examples of more sophisticated distance metrics
later in this section. In general, after providing its application-specific definition
of distance and the maximum allowable distance, the reference agent would like
a list of nodes such that:

Given a node α and a positive D, find the set of all nodes Qα such that
all nodes in Qα are reachable from α, and for all nodes β in Qα, the cost
of the shortest path from α to β is less than D.

In the Network Abstractions model, an agent specifies its distance metric
with two components. The first defines the weight of a link in the network. This

172 C. Julien and G.-C. Roman

can be computed using information available to the two nodes connected by the
link. The second component is a cost function evaluated over a series of weights.
In the hop count example, the weight of all links is defined to be one, while the
cost function simply adds the weights of links along the path.

The weight on a link, wij , is a combination of properties of the link (e.g.,
latency, bandwidth, or physical distance) and properties of the two nodes (i and
j) it connects (e.g., available power, location, or direction).

The cost function determines the cost of a particular path in the network,
defined by the series of nodes traversed by the path. Cost functions are de-
fined recursively; this allows them to be computed in a distributed fashion. A
path from reference node 0 to node k is represented as Pk. The cost function is
defined as:

f0(Pk) = Cost(f0(Pk−1), wk−1,k)

where Cost indicates the agent-specified function evaluated over the cost at the
previous hop and the weight of the most recent link. As will become evident in
the upcoming examples, we must require that the cost function strictly increases
with the number of hops from the reference node. Recursive evaluation of this
cost function over a network path determines its cost. In a real network, multiple
paths may exist between two nodes. Therefore, as shown by the darkened links
in Fig. 1, we build a tree rooted at the reference node that includes only the
lowest cost path to each node in the network.

An agent exploits the availability of the cost function and its associated
properties to limit the scope of the context computation by providing a bound
on the maximum allowable cost. Nodes to which the cost is less than the bound
are included in the context. This allows the computation to avoid touching nodes
outside its context bound.

2.2 Example Metrics

Next we examine some example distance metrics. First we provide a metric that
uses a more sophisticated weight definition, then show a more complicated cost
function.

Network Latency. Consider an application in which field researchers share
sensor data and video feeds. The context requirements for each researcher’s
tasks will likely be different. The Network Abstractions model allows the agents
running on behalf of each researcher to tailor their context definitions to the
researcher’s needs by defining a weight for each network link. Because we are
sending video, we want a link’s weight to account for the node-to-node latency:

wij =
node latency i

2
+

node latencyj

2
+ link latency ij .

where the first two components define the average time between when the node
receives a packet and when it propagates the packet. We use only half of this
number; otherwise we would count the node’s latency twice if the node is in the

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 173

middle of the path. This latency value will suffice under the assumption that
a node’s incoming latency is approximately equivalent to the node’s outgoing
latency. The third component of wij is the time required for a message to travel
between two nodes.

The application agent also provides a cost function; a simple one to use with
this weight definition is the same as in the hop count example:

f0(Pk) = f0(Pk−1) + wk−1,k,

where the cost of the path from node 0 (the reference) to node k along path Pk

is the sum of the cost to the previous node plus the weight of the new link. A
bound on this cost function is defined by a bound on the total allowed latency.

Physical Distance. Next we present a general-purpose metric based on phys-
ical distance. Agents running on cars traveling on a highway collect information
about weather conditions, highway exits, accidents, traffic patterns, etc. As a
car moves, its agent wants to operate over the information that will affect the
driver’s immediate route, so the data should be restricted to information within
a certain physical distance (e.g., within a mile).

The agent’s calculated context should be based on the physical distance be-
tween the reference node and other nodes. For this example, a link’s weight
reflects the distance vector between two connected nodes, accounting for both
the displacement and the direction of displacement between the two nodes:

wij = IJ

Fig. 2a shows an example network where specifying distance alone causes an
agent’s context to not be easily bounded. This results from the fact that a cost
function based on distance alone is not strictly increasing as the number of hops
from the reference node grows. To overcome this problem, the car agent’s cost
function should be based on a combination of the distance vector and a hop
count. The cost function’s value (ν) at a given node consists of three values:

ν = (maxD ,C ,V)

The first value, maxD , stores the maximum distance seen on this path. This
may or may not be the magnitude of the distance vector from the reference
to this node. The second value, C , keeps the number of consecutive hops for
which maxD did not increase. The final value, V, is the distance vector from
the reference nods to this node. Through the remainder of this description, we
will refer to these value using a “.” notation (e.g., ν.maxD refers to the maxD
component of the cost function value ν).

Specifying a bound for this cost function requires bounding both maxD and
C . A node is in the context only if both its maxD and C are less than the bound’s
values. Neither the value of maxD nor the value of C can ever decrease, and, if
one value remains constant for any hop, the other is guaranteed to increase.

Fig. 2d shows the cost function. In the first case, the new magnitude of the
vector from the reference node to this node is larger than the current value of

174 C. Julien and G.-C. Roman

Fig. 2. (a) Physical distance only; (b) Physical distance with hop count, restricted due
to distance; (c) Physical distance with hop count, restricted due to hop count; (d) The
correct cost function

maxD ; maxD is reset to the magnitude of the vector from the reference to this
node, C remains the same, and the distance vector to this node is stored. In
the second case, maxD is the same for this node as the previous node; maxD
remains the same, C is incremented by one, and the distance vector to this node
is stored.

Fig. 2b shows the same nodes as Fig. 2a using this new cost function. The
agent specified bound shown in Fig. 2b is D = (10, 2) where 10 is the bound on
maxD and 2 is the bound on C . This cost function can be correctly bounded, and
no nodes that should qualify are missed. Fig. 2c shows the same cost function
applied to a different network. In this case, while the paths never left the area
within distance 10, node Z still falls outside the context because the maximum
distance remained the same for more than two hops.

2.3 Protocol Overview

An agent desires the guarantee that any message it sends will be received only by
nodes within its context and that it is received by all nodes within its context.
Our protocol builds a tree over the network based on an application agent’s

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 175

specification, defining a single route from the reference node to all other nodes in
the context. In this section, we provide an overview of the protocol in preparation
for a discussion of its implementation and analysis. More details of the protocol
can be found in [13] and [14].

In general, the protocol can be divided into two components. The first deals
with the dissemination of an agent’s one-time queries on its context. Such queries
may require replies from context members, but the context that is built need not
be maintained. This lack of maintenance is beneficial when an agent’s operation
over its context occurs in a periodic polling fashion, because it reduces the over-
head needed to maintain the context in a highly dynamic network. The second
portion of the protocol deals with maintaining the context when the agent needs
continuous information. Due to the maintenance cost involved, ideal interactions
would extend one-time queries to larger contexts (e.g., poll for traffic conditions
for the next five miles), but only maintain smaller contexts (e.g., react to cars
within potential collision range of my car).

Assumptions. The protocol assumes a message passing mechanism that guar-
antees reliable delivery with associated acknowledgements. The protocol also
assumes that when a link disappears, both nodes that were connected by the
link can detect the disconnection. The protocol requires that all configuration
changes and an agent’s issuance of queries over the context are serializable with
respect to each other. A configuration change is defined as the change in the
value of the distance metric at a given link and the propagation of those changes
through the tree structure. Finally, we assume that the underlying system main-
tains the weights on links in the network by responding to changes in the con-
textual information required by application agents.

The Query Component. The protocol is on-demand in that a tree is built
only when an agent sends a data query. Piggy-backed on this data message
are the context specification and the information necessary for its computation.
Specifically, the query contains the context’s definition of link weight, the cost
function, and the bound. The protocol uses this information to determine which
nodes should receive this message.

Tree Building. Because any information required for computing an agent’s
context arrives in a query, nodes need not keep information about the system’s
global state. An agent with a data query to send bundles the context specifi-
cation with the query and hands it to the protocol implementation which in
turn determines which of the reference node’s neighbors are within the context
and sends them the query. Due to the wireless nature of the network, this can
be accomplished via one message transmission broadcast to all the neighbors;
those not in the context disregard the message. Neighbors in the context de-
termine if any of their neighbors are also in the context and, if so, rebroadcast
the message. In the course of query propagation, every context member remem-
bers the previous hop in its shortest path back to the reference node. A node
only rebroadcasts a duplicate message if its cost has decreased since this may

176 C. Julien and G.-C. Roman

cause inclusion of additional nodes in the context. When the query reaches the
bound, it will not be forwarded on; the query distribution stabilizes when every
node in the context knows its shortest path to the reference node. Each node
that receives the context message for the first time also passes the application
level information carried with the query to the designated application agent(s)
running on the node.

Tree Maintenance. As discussed above, contexts over which an agent issues
persistent queries require maintenance. One example of an application that needs
such a persistent query is one in which the application agent wishes to notify the
driver of the car if any other cars come within a potential collision radius. The
protocol for maintaining the context builds on the one-time query protocol above.
Ultimately, the entire protocol is an extension of a distance-vector protocol with
modifications for managing the distance metric and bound. To achieve context
maintenance, nodes within the context must react to changes that affect their
cost. The new cost may push the node (or other downstream nodes) out of
the context or pull them in. Because all needed information is stored within the
nodes in the context, the reference node need not participate in this maintenance;
instead it is a local adjustment to a local change. Due to the nature of distance
vector routing, this protocol suffers from the count-to-infinity problem, where,
upon loss of a link, two nodes both believe their route back to the reference node
is through each other. Under the assumption that maintained contexts will be
small, this problem can be overcome by maintaining the entire routing path.

2.4 Practical Research Issues

In the remainder of this paper, we present an implementation and analysis of
the protocol described above. The particular reference implementation discussed
allows us to explore the range of distance metrics and cost functions application
agents can use and to build an extensive software system for operating over
contexts in a dynamic mobile environment. We also provide an analysis of the
protocol over a simple metric (the hop count example discussed previously) used
to examine the feasibility of the consistency assumptions we make and to study
the performance of the protocol in a variety of networks. Specifically, we test
the limits of the network changes our protocol can handle and measure the
correctness of the context building mechanisms.

3 Implementation

Our implementation is written entirely in Java. This decision is driven by the
fact that we aim to ease application development, which means placing control
over the context in the hands of novice programmers. We feel that by using Java
to provide interfaces to application programmers, we can leverage its object-
oriented abstractions to ease the programming task. It is also imperative that
we provide a flexible protocol that an application developer can tailor to its

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 177

Fig. 3. Architecture of a system using Network Abstractions. In this figure, the gray
components are provided as part of our infrastructure; the white components we as-
sume to exist. Message refers to a message passing mechanism. Discovery refers to
our neighbor discovery protocol. Sensing refers to a low-level sensing component that
communicates with sensors on this local host. Sensor Monitoring allows this host to
interact not only with its sensors, but the sensors on its direct neighbors. Finally,
Network Abstractions refers to the protocol that is the focus of this paper

needs. Thus, application agents can define individualized distance metrics and
add new environmental monitors to the system to increase the flexibility of link
weight definitions.

The implementation allows issuance of both one-time and persistent queries
and maintains contexts which have persistent queries. We include built-in met-
rics (e.g., hop count) but also provide a general framework for defining new
metrics. Our implementation uses the support of two additional packages; one
for neighbor discovery and one for environmental monitoring. We describe these
two packages briefly before detailing the protocol implementation.

3.1 Support Packages

Fig. 3 shows the overall architecture of a system utilizing the Network Abstrac-
tions protocol we will describe. The Network Abstractions protocol assumes a
physical network and a message passing mechanism to exist. It also relies on
two additional packages: a neighbor discovery protocol and an environmental
monitoring component comprising both local sensing and neighborhood sensor
monitoring.

Neighbor Discovery. A node in our protocol receives knowledge of its neigh-
bors from a discovery service. This service uses a periodic beaconing mechanism
and can be parameterized with policies for neighbor addition and removal (e.g.,
a neighbor is only added when its beacon has been heard for two consecutive
beacon periods, and a neighbor is removed when it has not been heard from for
10 seconds).

Environmental Monitoring. Our protocol relies on the availability of context
information from the environment. To perform this context-sensing service in

178 C. Julien and G.-C. Roman

mobile ad hoc networks, we use the CONSUL monitoring package [15]. As shown
in Fig. 3, two components contribute to providing environmental monitoring
functionality: the sensing component and the sensor monitoring component. The
sensing component allows software to interface with sensing devices connected
to a host. Each device has a corresponding piece of software (a monitor) within
the CONSUL service. An application (or in this case, the Network Abstractions
protocol) can interact with a monitor by polling for its value or by reacting to
changes in its value. The sensor monitoring component maintains a registry of
monitors available on the local hosts (local monitors) and on hosts found by the
discovery package (remote monitors). Local monitors make the services available
on a host accessible to applications on that host. To gain access to local monitors,
the application provides the name of the monitor (e.g., “location”) to the registry.
To monitor context information on remote hosts (i.e., on neighboring hosts),
the registry creates local proxies that connect to and interact with monitor
components on the remote devices. To access remote monitors, the application
provides the ID of the remote host (which can be retrieved from the discovery
package) and the name of the monitor. The behavior of this package is similar
to that provided by the Context Toolkit [16]. Instead of gathering information
directly from hosts an arbitrary distance away, however, we focus on gathering
context information only about the links that connect a node to its neighbors
as defined by the discovery package. This allows the CONSUL package to not
rely on any centralized infrastructure or even any a priori knowledge, making it
highly applicable to dynamic ad hoc networks.

3.2 Network Abstractions Protocol Implementation

Before defining a context, an agent must build a distance metric. This requires
developing an object that adheres to a well defined metric interface and includes
two methods. The first determines the weights on links to neighbors using mon-
itors available on the local host and its neighbors. Because this link weight def-
inition is a Java method in the base class that is overridden by the application
agent’s subclass, it can include arbitrary code. The second method determines
the cost of a path, given a previous cost and a next hop weight. Again, because
this can include any code, the cost function definition can be tailored to the
application’s needs.

While some application programmers enjoy the flexibility this open interface
provides them, the complexity increases the development burden, especially for
those programmers unfamiliar with the inner workings of the Network Abstrac-
tions protocol. To further ease the use of the protocol, we provide several build
in distance metrics and cost functions. These include commonly used metrics,
e.g., a cost function based on hop count and a cost function based on physical
distance.

An agent defines a context by providing the aforementioned distance metric
and a bound. Until a query is registered on the context, however, the protocol
simply stores the information locally. It returns to the application agent a handle
to the defined context.

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 179

To send a one-time query, the application passes a data packet to the protocol
with a handle to a context. The protocol layer uses information provided by the
neighbor discovery and environmental monitoring services to determine which
neighbors must receive the message, if any. If neighbors exist that are within the
context’s bound, the local host packages the application agent’s data with the
context information and broadcasts the entire packet to its qualifying neighbors.

Upon receiving a one-time context query, the receiving host stores the pre-
vious hop, and repeats the propagation step, forwarding the packet to any of
its neighbors within the bound. It also passes the packet’s data portion to ap-
plication level listeners registered to receive it. These listeners are registered by
agents or services running on the receiving host that can respond to the send-
ing agent. If this same query (identified by a sequence number) is received from
another source, the new information is remembered and propagated only if the
cost of the new path is less than the previous cost.

An agent or service on a host receiving a query can reply to a data packet.
The protocol uses the stored previous hop information to route the reply back to
the reference host and ultimately the sending agent. Because this reply is asyn-
chronous and the context for a one-time query is not maintained, it is possible
that the route no longer exists. In these cases, the reply is dropped. To provide
a stronger guarantee on a reply’s return, an agent should use a persistent query
which forces the protocol to maintain the context.

The structure of a persistent query differs slightly from a one-time query in
that it must include the entire path. This information is used to overcome the
count-to-infinity problem encountered in distance vector protocols. The distri-
bution of the query is the same as above, but the actions taken upon query
reception vary slightly. The receiving host must remember the entire path back
to the reference host. When the same query arrives on multiple paths, the host
remembers every qualifying path. If the currently used path breaks, the protocol
can replace it with a viable path. To keep both the current path and the list
of possible paths consistent, the protocol monitors the aspects of the context
that contribute to distance definition; if these values change, the cost at this
host or its neighbors could also change. For example, to maintain a context built
around physical distance, the protocol must monitor the physical location of
this host and the physical locations of all neighbors also in the same context.
This is accomplished through the local and remote monitors of the environmen-
tal monitoring package. The protocol reacts to these changes and updates its
cost information locally. It also propagates these changes to affected neighbors.
Therefore local changes to the metric do not affect the entire context; instead
they only affect nodes from the point of change out to the bound. Before replac-
ing a path, the protocol checks that the new path is loop-free.

Replies to persistent queries propagate back towards the reference host along
the paths maintained by the protocol. A query is not guaranteed to reach the
reference. Our practical experience shows, however, that, in reasonably sized
networks with a fair amount of mobility, the delivery assumption is likely to
hold. Section 4 provides an empirical evaluation of this assumption.

180 C. Julien and G.-C. Roman

Fig. 4. Screen capture of demonstration system

3.3 Demonstration System

Fig. 4 shows a screen capture of our demonstration system. In this example, each
circle depicts a single host running an instance of the protocol. Even though, in
this case, all of the code runs on one machine, the demonstration system uses
the network for communication, which allows this system to display information
gathered from actual mobile hosts. This figure shows a single context defined
by an agent on the reference host (the gray host in the center of the white
hosts). This context is simple; it includes all hosts within one hop. When a
host moves within the context’s bound, it receives a query registered on the
context that causes the node to turn its displayed circle white. When the node
moves out of the context, the persistent query is removed, and the pictured node
turns itself black. The demonstration system allows simulation of a variety of
mobility models, including a Markov model, a random waypoint model [17], and
a highway model. It is useful to developers who wish to visualize the behavior of
their context definitions (distance metrics and cost functions) before deploying
an application in the real world.

3.4 Example Usage

The protocol implementation described here is currently in use to support the
ongoing implementation of a middleware model for ad hoc mobile computing. In
this system, called EgoSpaces [18], application agents operate over projections
(views) of the data available in the world. EgoSpaces addresses the specific needs
of individual application agents, allowing them to define what data is to be
included in a view by constraining properties of the data items, the agents that
own the data, the hosts on which those agents are running, and attributes of
the ad hoc network. This protocol provides the latter in a flexible manner, and

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 181

EgoSpaces uses the Network Abstractions protocol to deliver all communication
among agents.

4 Analysis and Experimental Results

The previous sections have overviewed the Network Abstractions protocol and
its implementation. In this section, we further motivate the use of this package
by developers of mobile agent systems by providing some performance mea-
surements. Ideally, a suite of such measurements will be used by application
developers in determining which context definitions are appropriate for different
needs or situations.

To examine the practicality of defining contexts on real mobile ad hoc net-
works, we used the ns-2 network simulator, version 2.26. This section provides
simulation results for context dissemination. These simulations are a first step
in analyzing the practicality of the protocol we have implemented. Not only do
they serve to show that it is beneficial to define contexts in the manner described
in ad hoc networks, the measurements also provide information to application
programmers about what types or sizes of contexts should be used under given
mobility conditions or to achieve required guarantees. All of the simulations we
describe in this section implement a context defined by the number of hops from
the reference node. Because this is the simplest type of context to define using the
Network Abstractions protocol, this provides a baseline against which we can
compare simulations of more complex or computationally difficult definitions.
Before providing the experimental results, we detail the simulation settings and
parameters we used.

4.1 Simulation Settings

We generated random 100 node ad hoc networks that use the random waypoint
mobility model [17]. The simulation is restricted to a 1000x1000m2 space. We
vary the network density (measured in average number of neighbors) by varying
the transmission range. We measured the average number of neighbors over our
simulation runs for each transmission range we used; these averages are shown in
Fig. 5. While the random waypoint mobility model suffers from “density waves”
as described in [19], it does not adversely affect our simulations. An average of
1.09 neighbors (e.e., 50m transmission range) represents an almost disconnected
network, while an average of 23.89 neighbors (i.e. 250m transmission range) is
extremely dense. While the optimal number of neighbors for a static ad hoc
network was shown to be the “magic number” six [20], more recent work [19]

Range (m) 50 75 100 125 150 175 200 225 250
Neighbors 1.09 2.47 4.21 6.38 9.18 12.30 15.51 19.47 23.89

Fig. 5. Average number of neighbors for varying transmission ranges

182 C. Julien and G.-C. Roman

shows that the optimal number of neighbors in mobile ad hoc networks varies
with the degree of mobility and mobility model. The extreme densities in our
simulations lie well above the optimum for our mobility degrees.

In our simulations, we used the MAC 802.11 standard [21] implementation
built in to ns-2. Our protocol sends only broadcast packets, for which MAC
802.11 uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA)1. This broadcast mechanism is not reliable, and we will measure
our protocol’s reliability over this broadcast scheme in our simulations. We im-
plemented a simple “routing protocol” on top of the MAC layer that, when it
receives a packet to send simply broadcasts it once but does not repeat it.

We also tested our protocol over a variety of mobility scenarios using the
random waypoint mobility model with a 0s pause time. In the least dynamic
scenarios, we use a fixed speed of 1m/s for each mobile node. We vary the
maximum speed up to 20m/s while holding a fixed minimum speed of 1m/s to
avoid the speed degradation described in [22].

4.2 Simulation Results for Context Query Dissemination

The results presented evaluate our protocol for three metrics in a variety of
settings. The first metric measures the context’s consistency, i.e., the percentage
of nodes receiving a context notification given the nodes that were actually
within the context when the query was issued. The second metric measures
the context notification’s settling time, i.e., the time that passes between the
reference host’s issuance of a context query and the time that every node in the
context that will receive the query has received it. The third metric evaluates the
protocol’s efficiency through the rate of “useful broadcasts”, i.e., the percentage
of broadcast transmissions that reached nodes that had not yet received the
context query.

The first set of results compare context definitions of varying sizes, specifi-
cally, definitions of one, two, three, and four hop contexts. We then evaluate our
protocol’s performance as network load increases, specifically as multiple nodes
define contexts simultaneously. Unless otherwise specified, nodes move with a
20m/s maximum speed.

Increased Size of Logical Context Decreases Consistency. In comparing
contexts of varying sizes, we found that as the size increases, the consistency
of the context decreases. Results for different context sizes are shown in Fig. 6.
These results show a single context definition on our 100 node network. The
protocol can provide localized contexts (e.g., one or two hops) with near 100%
consistency. With broader context definitions, the percentage of the context no-
tified drops to as low as 94%. The disparity between large and small context
definitions becomes most apparent with increasing network density. At large

1 In CSMA/CA a node ready to send senses the medium for activity and uses a back
off timer to wait if the medium is busy. When the node senses a clear medium, it
broadcasts the packet but waits for no acknowledgements.

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 183

Fig. 6. Percentage of context members receiving the message for contexts of vary-
ing sizes

densities, the extended contexts contain almost the entire network, e.g., at a
transmission range of 175m, a four hop context contains ∼80% of the network’s
nodes. In addition, the number of neighbors is 12.3, leading to network conges-
tion when many neighboring nodes rebroadcast. This finding lends credence to
the idea that applications should define contexts which require guarantees (e.g.,
collision detection) as more localized, while contexts that can tolerate some in-
consistency (e.g., traffic information collection) can cover a larger region.

Larger Contexts Take Longer to Settle. As the size of the defined context
increases, more time is required to notify all the context members. For a two hop
context with a reasonable density (9.18 neighbors at 150m transmission range),
the maximum time to notify a context member was 20.12ms. Results for this
measurement are shown in Fig. 7 The settling times for different sized networks
eventually become similar as network density increases. This is due to the fact
that even though the context is defined to be four hops, all nodes are within two
hops of each other, effectively rendering a four hop context definition a two hop
context.

Efficiency Decreases Almost Linearly with Increasing Density. Fig. 8
shows the protocol’s efficiency versus density for different sized contexts. First,
notice that the efficiency for a one hop network is always 100% because only one
broadcast (the initial one) is ever sent. For larger contexts, the efficiency is lower
and decreases with increasing density. Most of the lower efficiency and the de-
scending nature of the curve results from the fact that rebroadcasting neighbors

184 C. Julien and G.-C. Roman

Fig. 7. Maximum time for last context recipient to receive notification for contexts of
varying sizes

Fig. 8. Percentage of broadcasts that reached new context members for contexts of
varying sizes

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 185

are likely to reach the same set of additional nodes. This becomes increasingly
the case as the density of the network increases. Even at high densities, however,
a good number (> 20%) of the broadcasts reach additional context members.

This drop in efficiency as the density increases (as well as the corresponding
drop in context consistency) is caused in part by a “broadcast storm,” a com-
monly known problem well defined even in ad hoc networks. Previous work [23]
has quantified the additional coverage a broadcast gains in mobile ad hoc net-
works. Several alternative broadcasting mechanisms have been proposed, many
of which are compared in [24]. Integrating these or similar intelligent broad-
cast mechanisms may increase the resulting consistency and efficiency of context
notification.

Increased Network Load Decreases Consistency. The remainder of the
analysis focuses on an increasing load in the network, caused by multiple si-
multaneous context definitions by multiple nodes in the network. In all cases,
the multiple registrations were issued at randomly distributed times within a
100ms window. We show only results for four hop contexts; results for smaller
contexts are discussed in comparison. As Fig. 9 shows, five context definitions
have no significant impact on the consistency as compared to a single definition.
This is due to the fact that, on average, the different contexts issue queries after
other queries have had time to settle. For ten definitions, the atomicity starts
to decrease, bottoming out at ∼80% at a 200m transmission range. With more

Fig. 9. Percentage of context members receiving context messages for varying network
loads

186 C. Julien and G.-C. Roman

registrations, especially at the larger densities, the different context messages
interfere with each other. This has two ramifications. The first is that the broad-
cast messages collide and are never delivered. The second results from the fact
that MAC 802.11 uses CSMA/CA. Because the medium is busier (more neigh-
boring nodes are broadcasting), nodes are more likely to back off and wait their
turn to transmit. During this extended waiting time, the context members are
moving (at a maximum speed of 20m/s). By the time the medium is available,
context members that were in the context initially have moved out of it and will
not be notified. These effects decrease significantly with smaller context sizes,
e.g., at a transmission rate of 175m, ten definitions on a two hop context can
be delivered with ∼97% consistency, and twenty can be delivered with ∼89.5%
consistency.

Extensions to this protocol may be able to start to handle the negative effect
that increased network load has on the atomicity metric. These extensions could
include reusing information available about already constructed contexts to limit
the amount of work required to construct another context for a new agent. Also,
one-time context distributions may be able to use information stored on nodes
servicing persistent queries over maintained contexts.

Increased Network Load Increases Settling Time at High Densities.
Given the previous results, it is not surprising that increasing the network load
to five context definitions does not increase settling time. As shown in Fig. 10,

Fig. 10. Maximum time for last context recipient to receive notification for varying
network loads

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 187

however, increasing the network load to ten definitions increases settling times
of networks with high densities. Again, when the network density is large and
multiple nodes are building contexts, the dispersions of their contexts queries
interfere with each other, causing the broadcasting nodes to use their back off
timers. This increased back off causes a longer delay in the delivery of context
messages, especially to outlying context members.

We do not present any results for efficiency with changing network load, since
network load seems to have no real effect on the percentage of useful broadcasts.

Changing Speed Has No Impact on Context Notification. In our analysis
of this protocol over a variety of network speeds, we found that the dissemination
of context messages is not greatly affected by the speed of the nodes. This is
because the queries are only being sent out, and replies are not attempted. Were
we to provide results for reply transmission back to the reference host, we would
see that the routes are less likely to hold up for the scenarios with higher node
speeds. This concern is addressed by the maintenance protocol, but simulation
results for this portion of the protocol are outside the scope of this paper.

5 Conclusions

The ideas behind this work are rooted in the notion that communication in
multi-agent systems for mobile ad hoc networks is an essential component of
any environment supporting the execution of such agents. These types of sys-
tems are open, decentralized environments in which no centralized authority can
control who enters into communication range or even mediate communication
among agents who do manage to connect. The agents themselves are often quite
autonomous, each with its own independent task and goals to meet. This paper
demonstrates the feasibility of the Network Abstractions protocol to specifically
support the communication needs of such agents. While the protocol was pre-
sented and has been used within the context of mobile ad hoc networks, it can
extend to other genres of multi-agent systems in which the communication re-
quirements of the agents can be expressed in some form of a strictly increasing
distance metric. The dynamic nature of the protocol allows it to adapt to the
openness and unpredictability of a variety of multi-agent environments. In the
Network Abstractions protocol, the notion of an agent’s context is broadened to
include, in principle all available information, yet it can be conveniently limited
in scope to a neighborhood whose size and scope is determined by the specific
needs of a particular application agent as it changes over time.

This work implements and analyzes a protocol for providing contexts in mo-
bile ad hoc networks. The protocol provides a flexible interface that gives the
application agent explicit control over the expense of its operation while main-
taining ease of programming by making the definition of sophisticated contexts
simple. This protocol generalized the notion of “distance” to account for any
properties, allowing an application agent to adjust its context definitions to
account for its instantaneous needs or environment. Most importantly, the pro-

188 C. Julien and G.-C. Roman

tocol explicitly bounds the computation of the agent’s context to exactly what
the application needs. In general, in an ad hoc network, these interactions will be
localized in the neighborhood surrounding the host of interest, and therefore the
agent’s operations do not affect distant nodes. This bounding allows the agent
to tailor its context definitions based on its needed guarantees. The protocol has
been integrated with EgoSpaces, a middleware system for mediating coordina-
tion among distributed agents in mobile ad hoc networks. This, coupled with
extensions to the analysis presented in this paper will provide further evaluation
and feedback for protocol refinement and extension.

Acknowledgements

This research was supported in part by the Office of Naval Research MURI Re-
search Contract No. N00014-02-1-0715. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the Office of Naval Research. The authors would
also like to thank Qingfeng Huang for his work on the initial model, implemen-
tation of mobility models, and simulation advice.

References

1. Perkins, C., Bhagwat, P.: Highly dynamic Destination-Sequenced Distance-Vector
routing (DSDV) for mobile computers. In: ACM SIGCOMM Conference on Com-
munications Architectures, Protocols and Applications. (1994) 234–244

2. Broch, J., Johnson, D.B., Maltz, D.A.: The dynamic source routing protocol for
mobile ad hoc networks. Internet Draft (1998) IETF Mobile Ad Hoc Networking
Working Group.

3. Perkins, C., Royer, E.: Ad hoc on-demand distance vector routing. In: Proceedings
of the 2nd IEEE Workshop on Mobile Computing Systems and Applications. (1999)
90–100

4. Chiang, C., Gerla, M., Zhang, L.: Adaptive shared tree multicast in mobile wireless
networks. In: Proceedings of GLOBECOM. (1998) 1817–1822

5. Gupta, S., Srimani, P.: An adaptive protocol for reliable multicast in mobile multi-
hop radio networks. In: IEEE Workshop on Mobile Computing Systems and Ap-
plications. (1999) 111–122

6. Bae, S., Lee, S.J., Su, W., Gerla, M.: The design, implementation, and performance
evaluation of the On-Demand Multicast Routing Protocol in multihop wireless
networks. IEEE Network, Special Issue on Multicasting Empowering the Next
Generation Internet 14 (2000) 70–77

7. Madruga, E., Garcia-Luna-Aceves, J.: Scalable multicasting: The core assisted
mesh protocol. ACM/Baltzer Mobile Networks and Applications, Special Issue on
Management of Mobility 6 (1999) 151–165

8. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

Supporting Context-Aware Interaction in Dynamic Multi-agent Systems 189

9. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proceedings of the International Converence on Mobile Computing and Networking
(MobiCom). (2000) 20–31

10. Zhou, H., Singh, S.: Content based multicast (CBM) in ad hoc networks. In:
Proceedings of International Symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHoc). (2000) 51–60

11. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In:
Proceedings of the 2nd International Symposium on Wearable Computers. (1998)
92–99

12. Rhodes, B.: The wearable remembrance agent: A system for augmented mem-
ory. In: Proceedings of the 1st International Symposium on Wearable Computers.
(1997) 123–128

13. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proceedings of the 24th International Conference on Software
Engineering. (2002) 363–373

14. Julien, C., Roman, G.C., Huang, Q.: Network abstractions for simplifying mobile
application development. Technical Report WUCSE-04-37, Washington University
(2004)

15. Hackmann, G., Julien, C., Payton, J., Roman, G.C.: Supporting generalized con-
text interactions. In: Proceedings of the 4th International Workshop on Software
Engineering for Middleware. (2004)

16. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human Computer
Interaction 16 (2001) 97–166

17. Broch, J., Maltz, D., Johnson, D., Hu, Y.C., Jetcheva, J.: A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In: Proceedings of
the International Converence on Mobile Computing and Networking (MobiCom).
(1998) 85–97

18. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proceedings of the 10th International Symposium on the
Foundations of Software Engineering. (2002) 21–30

19. Royer, E., Melliar-Smith, P., Moser, L.: An analysis of the optimum node density
for ad hoc mobile networks. In: Proceedings of the IEEE Conference on Commu-
nications. (2001) 857–861

20. Kleinrock, L., Silvester, J.: Optimum transmission radii in packet radio networks
or why six is a magic number. In: Proceedimgs of the IEEE National. Telecommu-
nications Conference. (1978) 4.3.1–4.3.5

21. IEEE Standards Department: Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications. IEEE standard 802.11-1999 (1999)

22. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: Proceed-
ings of INFOCOM. (2003) 1312–1321

23. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proc. of MobiCom. (1999) 151–162

24. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proc. of MobiHoc. (2002) 194–205

Environment-Based Coordination Through
Coordination Artifacts

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Università di Bologna, via Venezia 52, 47023 Cesena, Italy
{aricci, mviroli, aomicini}@deis.unibo.it

Abstract. In the context of human organisations, environment plays a fundamen-
tal role for supporting cooperative work and, more generally, complex coordi-
nation activities. Support is realised through services, tools, artifacts shared and
exploited by the collectivity of individuals for achieving individual as well as
global objectives.

The conceptual framework of coordination artifacts is meant to bring the
same sort of approach to multiagent systems (MAS). Coordination artifacts are the
entities used to instrument the environment so as to fruitfully support cooperative
and social activities of agent ensembles. Here, infrastructures play a key role by
providing services for artifact use and management.

In this work we describe this framework, by defining a model for the coor-
dination artifact abstraction, and discussing the infrastructures and technologies
currently available for engineering MAS application with coordination artifacts.

1 Introduction

Direct interaction and explicit communication are not always the best approaches to
achieve coherent systemic behaviour in the context of MAS and agent societies. This is
quite evident when taking into account the main approaches dealing with environment-
based coordination such as stigmergy and, more generally, mediated interaction frame-
works and infrastructures based on forms of coordination / cooperation without direct
communication [1, 2, 3, 4, 5, 6].

Mediated interaction and environment-based coordination are highly debated also in
other research fields outside MAS and CS, where collaborative and cooperative activities
are studied in complex social contexts: notable examples are CSCW and HCI [7], recently
focussing on cognitive and social theories which explicitly take into account the role of
environment in coordination, such as Distributed Cognition [8] and Activity Theory [9].
There, a relevant issue is to understand what makes an environment a good place for
actors to work together:

How (if) the agent environment can be designed to suitably support the social (coordi-
nation / cooperation / competition) activities of a dynamic set of heterogeneous agents?

This question can be considered of primary importance also in MAS, and it involves
issues that are not fully considered by current approaches dealing with coordination
through the environment. In particular:

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 190–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Environment-Based Coordination Through Coordination Artifacts 191

“Not only ants” — Approaches dealing with environment based coordination typically
consider reactive agents, either embedding all the intelligence into the environment
or obtaining it as emergent phenomenon (well known examples are stigmergy coor-
dination and swarm intelligence [1, 5, 4]). Here instead we are interested on the one
side to devise out environmental support useful meant to amplify the intelligence of
individual agents, possibly exploiting their cognitive capabilities. On the other side,
we are interested in considering intelligence not only as an emergent phenomenon,
but promoting the engineering of intelligence by designing and building suitable
environmental abstractions.

“Not only special-purpose coordination” — Existing environment-based approach
to coordination – such as stigmergy – typically provide solutions only to specific
coordination problems, without the abstraction required to use and systematise co-
ordination in the wide range of social activities. Here instead we are interested in
conceiving general purpose environment supports that could be suitably specialised
and dynamically configured / tuned for addressing specific and heterogeneous co-
ordination activities.

“Toward engineering” — Frequently, investigations in literature only concern simula-
tion and abstract models (a notable example can be found in [6], where a model for
situated MAS is provided for the engineering of systems). Here we are interested
instead in methodologies and infrastructures, i.e. in identifying models, languages,
architectures and middleware technologies to be exploited at the design stage in
agent oriented software engineering, as well as for development and online man-
agement of MAS.

In this paper we describe the conceptual and engineering framework based on the no-
tion of coordination artifact, which aims at addressing the above issues. Our framework
provides a systematic view of environment-based coordination for general coordination
problems, and extends the scope of applicability to heterogeneous, cognitive / intelligent
agents. Coordination artifacts are runtime abstractions encapsulating and providing co-
ordination services, to be exploited by agents within a given social context. They can be
exploited then as basic building blocks for designing and developing suitable working
environments for heterogeneous multi-agent systems, supporting their coordination for
collaboration or competition.

The remainder of the paper is organised as follows. section 2 recalls the conceptual
framework inspired byActivity Theory, as a background for the approach described in the
paper, focussing on the importance of the environment in supporting social activities.
section 3 presents in detail the coordination artifact abstraction, along with its main
properties. section 4 sketches the features of formal models which can be suitably used
to rigorously define coordination artifacts, their behaviour and properties. section 5
discusses the impact of the framework of MAS engineering, and section 6 discusses
TuCSoN as a model / infrastructure / technology supporting the main features of the
coordination artifact approach. Finally, related work and conclusion are presented in
section 7 and section 8, respectively.

192 A. Ricci, M. Viroli, and A. Omicini

2 Environment as Context of Social Activities: The Activity
Theory Perspective

Environment support for both the analysis and the development of activities in com-
plex systems – such as human society – is among the main issues studied by socio-
psychological approaches such as Activity Theory (AT) and Distributed Cognition.

Activity Theory, defined also Cultural-Historical Activity Theory (CHAT), is a social
psychological theory born in the context of Soviet Psychology (SP) from the work
of Lev Vygotsky (1926–62), rooted in the dialectic materialism of Marx and Engels
[10]. Originated as a part of the attempt to produce a Marxist Psychology, AT has been
developed and evolved in the Soviet Union by Vygotsky’s students – Alexey Leontiev
in particular – for the first half of the 20th century. Then, in the second half it has been
spread also outside Soviet Union, first in Scandinavia and in Germany and then – at the
end of the 1990s – in United States. Nowadays it has been applied also in the context of
computer science related fields, such as Computer Supported Cooperative Work (CSCW)
and Human Computer Interaction (HCI) (see [9] for a survey).

AT is a very general framework for conceptualising human activities – how people
learn and society evolves – based on the concept of human activity as the fundamental
unit of analysis. The approach was developed in contrast to purely cognitive approaches
which were dominating the first years of the 20th century: according to them, human
individual and social activities could be analysed and understood focussing only on the
internal (mentalistic) representation of the individuals, in other words on the individual
information-processing capabilities. On the contrary, the basic inspiration principle ofAT
is the principle of unity and inseparability of consciousness (human mind) and activity:
human mind comes to exist, develops, and can only be understood within the context of
a meaningful, goal-oriented, and socially determined interaction between human beings
and their material environment. Then, a fundamental aspect for AT has been from the
beginning the interaction between the individuals and the environment where they live,
in other words their context.After an initial focus on the activity of the individuals, theAT
research has evolved toward the study of human collective work and social activities, then
facing issues such as the coordination and organisation of activities in human society.

Here the investigation ofAT is of particular relevance important because it remarks the
fundamental role of the environment in the development of complex systems. According
to AT any activity carried on by one or more components of a systems – individually
or cooperatively – cannot be conceived or understood without considering the tools
or artifacts mediating the actions and interactions of the components. Artifacts on the
one side mediate the interaction between individual components and their environment
(including the other components), on the other side embody the part of the environment
that can be designed and controlled to support components’ activities. Moreover, as an
observable part of the environment, artifacts can be monitored along the development of
the activities to evaluate overall system performance and keep track of system history.
In other words, mediating artifacts become first class entities for both the analysis and
synthesis of individual as well as cooperative working activities inside complex systems.

The complexity of the activities of the social systems focussed by AT can be found
nowadays in MAS and agent societies. With analogous consideration, we consider fun-

Environment-Based Coordination Through Coordination Artifacts 193

damental to frame the role of the environment for the analysis and synthesis of social
activities inside MAS, and in particular of the artifacts mediating such activities. Among
them we can include disembodied artifacts, such as communication languages [11], on-
tologies, protocols, but also embodied ones, such as the pheromone infrastructure [12] in
the context of stigmergy coordination, or Institution middleware in electronic Institution
approaches [13]. In this work we describe the framework of coordination artifacts as
an approach to systematise this vision and making it effective for the engineering of
systems as MASs, from design to development and runtime, including their dynamic
observation and management.

3 The Coordination Artifact Abstraction

Coordination artifacts can be conceived as persistent entities specialised in providing
a coordination service in a MAS [14, 15]. The term coordination should be here un-
derstood in its most general acceptation, as the management of dependencies among
separate activities [16], shaping and constraining the (agent) interaction space [3]. Coor-
dination artifacts are infrastructure abstractions meant to improve coordination activities
automation; they can be considered then as basic building blocks for creating effective
shared collaborative working environments, alleviating the coordination burden for the
involved agents. Human society is full of entities like coordination artifacts, engineered
by humans in order to support and automate coordination activities: well-known ex-
amples are street semaphores, blackboards, queuing tools at the supermarkets, maps,
synchronisers and so on.

Basically, a coordination artifact (i) entails a form of mediation among the agents
using it, and (ii) embeds and enact effectively some coordination policy. Accordingly,
two basic aims can be identified: (i) constructive, as an abstraction essential for creating
and composing social activities, (ii) normative, as an abstraction essential for ruling
social activities.

Also taking inspiration from our society, we can then devise a basic abstract model,
where a coordination artifact features:

– a usage interface, defined in terms of a set of operations. Agents use coordination
artifacts by executing operations provided by the artifact, and by eventually per-
ceiving information about the operation completion. Notice that due to the nature
of coordination artifacts and their interaction schema, agent actions executing op-
erations are more similar to physical acts rather than communicative acts – which
makes our approach sensibly different from direct, ACL-based interaction [17];

– a set of operating instructions. This information describe (formally) how to use
the artifact in order to exploit its coordination service. For instance, operating in-
structions might specify the protocol of interactions to be used, and the mentalistic
semantics of actions and perceptions [18];

– a coordination behaviour specification. This information describe (formally) the
coordinating behaviour of the artifact, in terms of coordination rules required for
enacting the coordination service.

In particular, taking the agent viewpoint, to exploit a coordination artifact simply
means to follow its operating instructions, on a step-by-step basis. It is worth noting

194 A. Ricci, M. Viroli, and A. Omicini

that, since a considerable coordination burden can be charged upon the artifact and be
hidden from the agents, operating instructions are generally quite simple when compared
to the interactive behaviour required in the case of direct communication (protocols).
Hence, our approach to interaction can be fruitfully leveraged by intelligent agents, which
can exploit an artifact through its operating instructions so as to take part to complex
coordination scenarios.

A simple but effective example of coordination artifact is a task scheduler in co-
operative working environments, which can be found in concurrent systems as well as
in human society. The coordination problem concerns ruling the order of execution of
a dynamic set of tasks taken in charge by some agents, according to some scheduling
policy. A coordination artifact can be designed to provide such a scheduling service. A
possible usage interface would consist – for instance – in two basic operations1:

– taskStart(-Token), to manifest its intent to start executing the task. The completion
of the operation means that the agent can start the task according to the scheduling
policy of the artifact. A token is returned to the agent for identifying its activity;

– taskCompleted(+Token), to signal the completion of the task.

Operating instructions simply consist in: first, invoking the taskStart operation to
manifest the intention to start a task; then, invoking taskCompleted to signal the com-
pletion of the task. The coordinating behaviour of the artifact concerns the enactment
of the scheduling policy, FIFO-based for instance, queueing requests and serving them
according their position in the queue.

3.1 Main Properties

The basic properties of the agent abstraction have been extensively described in liter-
ature, in terms of autonomy, pro-activeness, reactivity, social ability and so on [19].
Analogously, here we focus on the main features that characterise coordination artifacts,
which are indeed different.

Specialisation — Coordination artifacts are specialised in automating coordination
activities. For this purpose, they typically adopt a computational model suitable
for effective and efficient interaction management, whose semantics can be easily
expressed with concurrency frameworks such as process algebra [20], Petri nets
[21], Chemical Abstract Machines [22].

Encapsulation: Abstraction and Reuse — Coordination artifacts encapsulate a coordi-
nation service, allowing user agents to abstract from how the service is implemented.
As such, a coordination artifact is perceived as an individual entity, but actually it
can be distributed on different nodes of the MAS infrastructure, depending on its
specific model and implementation. Encapsulation is the key to achieve reuse of
coordination. Agent society engineers can create and exploit handbooks or catalogs
of coordination artifacts, embodying the solutions to general coordination problems
in organisations. Finally, a coordination artifact provides a certain quality of co-
ordination, in particular in terms of the scalability with respect to the dimensions

1 The basic Prolog notation is adopted for describing argument of operations: + means an output
argument, - an input argument, ? an input / output argument.

Environment-Based Coordination Through Coordination Artifacts 195

identified by Durfee in [23], which are related to performance, robustness, reliabil-
ity, and so on. The description of such dimensions is important to identify the range
of applicability of the artifact in the engineering of agent societies.

Malleability — Coordination artifacts are meant to support coordination in open agent
systems, characterised by unpredictable events and dynamism. For this purpsose,
their coordination behaviour can be adapted and changed dynamically, either (i)
by engineers (humans) willing to sustain the MAS behaviour, or (ii) by agents
responsible of managing the coordination artifact, with the goal of flexibly facing
possible coordination breakdowns or improving the coordination service provided.

Inspectability and controllability — A coordination artifact typically supports different
level of inspectability: (i) inspectability of its operating instructions and coordination
behaviour specification, in order to let user agents to be aware of how to use it
or what coordination service it provides; (ii) inspectability of its dynamic state
and coordination behaviour, in order to support testing and diagnosing (debugging)
stages for the engineers and agents responsible of its management. Controllability
is also fundamental for runtime management of a coordination artifact, by making it
possible to freeze its behaviour, to trace it, supporting step-by-step execution while
watching its state, to restart it, and so on. So, from an operational point of view, a
coordination artifact can be understood as a sort of virtual machine of coordination,
executing some form of coordination specification, fully inspectable and controllable
by coordination artifact administrators [24].

Summing up, coordination artifacts are conceived to be engineering abstractions
used for designing, building and supporting at runtime coordination in agent societies,
suitably instrumenting their dynamic working environment. Also, they can be useful to
support forms of scientific investigation of collective behaviours. As mediating entities,
coordination artifacts typically reify and manage agent communication events; accord-
ingly, they can be used to trace and log the overall interaction behaviour of the agent
societies exploiting them. Thus, they can act as kinds of social memory, which can then
be inspected for possible scientific analysis about global behaviours.

3.2 Artifacts as First Class Citizens of MAS

How to model the coordination artifact abstraction in MAS? Given the features described
previously, it is evident that the agent notion do not fit: properties such as inspectability,
controllability, malleability are extraneous (and to some extent in contrast) to agents,
and viceversa, autonomy, proactiveness, and rationality are extraneous to coordination
artifacts. Coordination artifacts are do not have goals to be achieved autonomously,
interacting with other artifacts: instead, they can are objects that can be shared and used
to achieve some collective goals, as a kind of glue among the agents exploiting them.

Moreover, the inter-agent and agent-artifacts models of interaction are profoundly
different: agents have no interfaces, in the sense that they are not used by other agents
through operations. Coordination artifacts are environment resources, which agents use,
instead of communicating with them according to an high-level ACL. So, the agent
abstraction is not the fittest one in order to understand, model, and engineer a coordination
artifact behaviour.

196 A. Ricci, M. Viroli, and A. Omicini

For this reason, it is reasonable to introduce coordination artifacts in MASs as first
class entities, as a part of the MAS resource environment. Using agents to model coordi-
nation artifacts – shaping their structure and behaviour in order to emulate the properties
discussed previously – leads to an abstraction gap which makes the engineering of sys-
tems problematic as far as they grow in complexity. Our motto here for governing such
complexity is keep the abstraction alive: i.e. consider the abstractions used at the design
stage as first class ones also at the development stage and at runtime, enabling their
identification, observation, control and testing at any stage of the engineering process.
In order to support this vision, we consider fundamental on the one side to adopt for-
mal models capturing essential aspects of coordination artifacts, so as to promote their
correct specification, behaviour runtime controllability and testing. On the other side,
to design and build suitable infrastructures providing services for coordination artifact
organisation, use and dynamic management. The former aspect will be discussed more
in detail in section 4, while the latter is discussed in section 6.

4 Formal Models for Coordination Artifacts

The ontological difference between the coordination artifact and the agent abstraction
is reflected also by the formal models that we can adopt to define the structure and
behaviour of a coordination artifact. To emphasise this point, in this section we provide
a formal model of the behaviour of coordination artifacts, taking into account its three
basic ingredients: (i) the concepts of actions and perceptions — that is, the usage inter-
face —, which characterise agent interactions with artifacts; (ii) the usage instructions
associated to each agent, which can be used to enforce agent correct behaviours and to
promote its rational exploitation of artifacts; and (iii) the coordination policy that the
artifact realises, defining the task actually automatised. Since we argue that coordination
artifacts are not suitably modelled and engineered as cognitive entities like agents, we
do not describe their behaviour in terms of mentalistic properties. In fact, the formal
framework of modal logics for mentalistic properties appears to be useful as a tool to
model complex, often intrinsically unpredictable systems, whose behaviour is hardly
understood in terms of their design [25]. Rather, we here promote the idea that coordina-
tion artifacts are designed so as to encapsulate well-designed coordination tasks, and to
accordingly feature predictable behaviour. We hence rely on a formal description based
on operational semantics, which — by definition — can be directly exploited to devise
a correct implementation [26]. In particular, as far as interaction and coordination are
concerned, we find it useful to leverage the formal framework of concurrency theory
and process algebraic approaches (such as in CCS [27]). The application of such lan-
guages and tools to the MAS field is not completely new but it is still under development
[28, 29] — with the application presented here being a new interesting example. Here,
a coordination artifact is a tuple 〈α, β, ρ, δ,−→σ〉. α is a meta-variable ranging over
the operations allowed by the coordination artifact, namely, identifying the actions the
agent can execute on it. β is the meta-variable ranging over perceptions of action com-
pletion, which may possibly contain some information about the outcome of the action.
Correspondingly, the set L of interactions between agents and the coordination artifact,
ranged over by l, is defined by the syntax

Environment-Based Coordination Through Coordination Artifacts 197

l ::= id!α | id?αβ

where id!α represents agent id executing action α, and id?αβ represents agent id per-
ceiving the completion β to action α. ρ is a function associating to each agent identifier
id the usage instruction I he has to follow, here expressed as the protocol of admissi-
ble actions and perceptions for that agent. Following the approach described in [18],
instructions can be defined by exploiting typical process algebraic operators, e.g. by the
syntax:

I ::= 0 | !α.I | ?β.I | I + I | I ‖I | D
Here, 0 is the void instruction, !α.I is the execution of action α followed by contin-

uation I , ?β.I is the perception of a completion β followed by continuation I , operator
“+” is used for choice between instructions, “‖” for parallel (concurrent) composition of
instructions, and D is the invocation of a recursive definition. When an action / percep-
tion continuation is 0, it is usually omitted, writing e.g. α in place of α.0 with no risk of
ambiguity (as in CCS). As an example, the definition IX :=!a.((?b.IX)+?c) means that
the agent is initially allowed to execute action a, and later perceives either completion b
or c: while c involves termination of the instructions, b causes the whole instructions to
be allowed again, through the recursive call to IX . This is a typical schema for an agent
repeatedly asking information through the artifact until the protocol is shut down. An op-
erational semantics can be defined for this language, based on a transition relation −→I ,

where notation I
!α−→I I ′ means that instructions (state) I moves to I ′ by the execution

of action α, and I
?αβ−−→ I ′ that I moves to I ′ as action α completes with perception β.

The details of that semantics are not particularly relevant here, for the meaning of the
above algebraic operators is quite standard and plays no significant role in the following.
Therefore, operational rules are avoided for the sake of brevity: the interested reader can
refer to [18] for their presentation. Meta-variable δ ranges over the data reified into the
coordination artifact to keep track of the state of the coordination task. Correspondingly,
we let meta-variable σ range over the set Σ of states of the coordination artifact, which
is defined as:

σ ::= 0 | δ | l | (σ‖σ)

Operator ‖ is characterised by the following congruence rules:

σ‖0 ≡ σ σ‖σ′ ≡ σ′ ‖σ σ‖(σ′ ‖σ′′) ≡ (σ‖σ′)‖σ′′

Thus, elements σ can be expressed as δ1 ‖ . . . ‖ δn ‖ l1 ‖ . . . ‖ lk, and are easily
understood as parallel compositions of elements δ and interactions l — the latter used
to represent pending actions waiting to be executed and pending completions waiting
to be perceived. State changes as interactions occur: the dynamics is modelled by the
transition relation −→σ⊆ Σ×Σ, representing the fact that a state σ may eventually move
to another σ′, which typically happens when a new pending action has to be computed.
So, while α and β shape the interactions allowed by the coordination artifact, ρ defines
the protocols allowed to the agents, while δ and −→σ define the actual coordination task.
Given the tuple 〈α, β, ρ, δ,−→σ〉, the (interactive) behaviour of a coordination artifact
is described by a transition system 〈C,−→, L ∪ {τ}〉. C is the set of configurations
of the coordination artifact, which are of the kind ρ ⊗ σ namely, the composition of a

198 A. Ricci, M. Viroli, and A. Omicini

function ρ associating to each agent the instructions it currently has to follow, and the
current state of the artifact σ. The transition relation −→⊆ C × (L ∪ {τ}) × C is then
defined by the rules:

ρ(id) !α−→I I

ρ ⊗ σ
id!α−−→ ρ[id �→ I] ⊗ σ‖ id!α

[ACT]

ρ(id)
?αβ−−→I I

ρ ⊗ σ‖ id?αβ
id?αβ−−−−→ ρ[id �→ I] ⊗ σ

[COMP]

σ −→σ σ′

ρ ⊗ σ
τ−→ ρ ⊗ σ′ [COORD]

The first rule handles a new action α executed by agent id to the coordination artifact.
This is allowed only if the associated instructions ρ(id) admit the transition towards some
instructions I , in which case such instructions become the new instructions associated
to id — ρ moves to ρ[id �→ I] — and interaction id!α is reified in the state σ. In a similar
way, the second rule deals with completion β to action α: when this is reified in the state
σ and the instructions admit its perception, the completion is actually executed, and
the ρ function is updated. Finally the third rule deals with the actual coordination task
realised inside the artifact: simply, when transition relation −→σ enables a transition for
the state σ this can be applied to the current configuration and becomes a silent transition
for the whole coordination artifact. So, while the first two rules handle agent interactions
according to the operating instructions, the last rule encapsulates the core behaviour of
the coordination artifact: the coordination task by which the interaction of agents is
governed. Notice that in this formalisation we reify the current state of instructions
for each role — namely, the role function — along with the coordination artifact state
σ. This choice should amount to the idea that the MAS infrastructure handling the
coordination artifact is in charge of keeping track of the dynamic evolution of such
a function, most likely to enforce the compliance of each agent interactive behaviour
with respect to the associated operating instructions. In general, however, each MAS
infrastructure can support such an enforcement in different ways. On the one hand, the
coordination artifacts provided could support this built-in ability: in this case operating
instructions are not only a design-tool for the artifact, but really make into its actual
run-time behaviour. On the other hand, because of many reasons including effectiveness
and security, the MAS infrastructure could rely on different run-time (infrustructural)
abstractions in charge of enforcing correct agent behaviours. This is the case for instance
of TuCSoN [30] described in section 6, where the Agent Coordination Context notion is
used to encapsulate, enable, and — most relevant here — enact agent interactions with
the environment, and with coordination artifacts in particular.

5 Engineering Social Activities

The introduction of coordination artifacts impacts on the methodology adopted for en-
gineering social activities in agent societies. Taking inspiration from Activity Theory,

Environment-Based Coordination Through Coordination Artifacts 199

Fig. 1. Levels of a social activities

we can identify three different stages characterising any social activities supported by
coordination artifact (see Fig. 1):

Co-construction — In this stage, engineers and scientists understand and reason about
the social objectives of the society, and define a model of the social tasks required to
achieve them. This implies understanding the shape of the agent interaction space,
by eventually identifying also the dependencies that need to be managed (depen-
dency detection is a fundamental aspect of coordination, according to the theory of
coordination [16] and to cognitive theories of agent societies [31]).

Co-operation — In this stage, society engineers – and eventually intelligent agents –
design and build the coordination artifacts according to the objective identified in
the previous stage (co-construction). This implies understanding how to manage the
dependencies previously identified, and defining a coordinating behaviour useful
for the purpose. A model of coordination artifact must be chosen, according to its
ability of embedding and enacting such a coordinating behaviour.

Co-ordination — In this stage, coordination artifacts are exploited, supporting the
execution of the social activity. Here, the focus is on the efficient execution and
automation of the coordination activities.

As in the case ofAT, the three levels are distinct analytical moments that can be applied
continuously, since a social activity is considered to be always under development, given
the intrinsic openness of the environment and the dynamism of organisations.

5.1 Activity Levels as Engineering Stages

It is not without reason that Activity Theory is primarily used as an analytical tool for
understanding collaborative work in complex organisational contexts, and as a design
tool to improve them. In such contexts,AT makes it possible to face the social complexity
first by separating individual and collective activities, then by identifying and designing
the artifacts required to support both of them.

Along this line, we can devise a correspondence between the three collaborative
stages in Fig. 1, and the engineering stages as typically found in (agent-oriented) soft-
ware engineering methodologies, i.e., analysis, design, development and deployment /

200 A. Ricci, M. Viroli, and A. Omicini

runtime. Generally speaking, individual and social tasks are identified and described
in the analysis and design stages of such methodologies [32]. Each individual tasks is
typically associated with one specific competence of the system. Each agent in the sys-
tem is assigned to one or more individual tasks, and assumes full responsibility for their
correct and timely completion. From an organisational perspective, this corresponds to
assigning each agent a specific role in the organisation. Conversely, social tasks rep-
resent the global responsibilities of the agent system. In order to carry out such tasks,
several possibly heterogeneous competences usually need to be combined. The design
of social tasks leads to the identification of global social laws that have to be respected
/ enforced by the society of agents, to enable the society itself to function properly and
in accordance with the expected global behaviour [32].

Given this picture, it is possible to identify a correspondence between the analysis
stage (where individual and social tasks are identified) and the co-construction level,
where the social objectives of the activities are shaped. Then, the identification of the
social laws required to achieve the social tasks can be seen as a first step in the co-
operation level. This level roughly corresponds to the design and development stages
of the engineering process: coordination artifacts are the abstractions which make it
possible to design and develop social tasks. At the co-operation level such artifacts are
designed and developed to embody and enact – as governing abstractions provided by the
infrastructure – the social laws and norms previously identified. Finally, the deployment
and runtime stages correspond to the co-ordination level, when the coordination artifacts
are instantiated and exploited.

The dynamism among the levels, that are compared here to the engineering stages
of a system, promote then a new approach in the engineering of systems that we can call
here online engineering: coordination artifacts can be re-designed, manipulated, tested,
debugged, analysed dynamically, at runtime. In order to support online engineering
methodology two aspects are essential: first, working with abstractions featuring suitable
properties such as inspectability, controllability and malleability, which are necessary for
their online analysis and synthesis; second, designing and building infrastructures that
– as mentioned in previous section – keep the abstractions alive, with services enabling
their access and exploitation – supporting the co-ordination stage –, and tools for their
manipulation (inspection, control, adaptation) – supporting the co-operation stage. In
section 6 a concrete example of such an infrastructure – TuCSoN – is described.

5.2 Bridging the Gap Between Subjective and Objective Coordination

The three scientific and engineering levels of the social activities make it possible to
frame explicitly the role of subjective and objective coordination inside the systems, and
to bridge the gap between them. The distinction between subjective and objective ap-
proaches has been recognised as fundamental to characterise the role of the environment
in the engineering of social aspects in multi-agent systems [33, 34]. Generally speaking,
in subjective approaches agents coordinate with each other by observing and reasoning
subjectively on the environment and acting consequently, in order to achieve collective
goals: coordination is then interpreted as an individual, psychological activity trying to
achieve its own subjective goals in the context of a multi-component system. In objective
approaches instead the environment is considered as an active part of the coordination

Environment-Based Coordination Through Coordination Artifacts 201

process, driving agent interactions toward the achievement of the global objectives: co-
ordination is basically regarded as a normative activity performed by some parts of a
multi-component system on behalf of the system designer – typically, by a coordination
medium provided by an infrastructure. The first approach seems to better suit systems
whose components exhibit a high degree of autonomy (intelligent agents being the most
obvious example), whereas the second fits well application scenarios involving a finer
component granularity (as typical in the case of mobile agents). The engineering of com-
plex applications call for bridging the gap between subjective and objective approaches
[33, 17]: on the one side, the flexibility typically characterising subjective approaches is
required to face openness of complex coordination activities, reacting to unpredictable
events and change of strategies and goals. On the other side, the engineering attitude
on coordination which characterises objective approaches is required to automate the
coordination process, scaling up with its complexity.

Adopting the framework of coordination artifacts, it is possible then to frame sub-
jective and objective coordination in the same methodological context [14]. In the co-
ordination stage we can clearly see the level of objective coordination: coordination arti-
facts are exploited in order to maximise the automation and performance of coordination
activities, with no need of complex negotiation protocols between the participants. In-
stead, co-operation is typically the stage where the subjective approaches are necessary,
because they account for reasoning about the features of the coordination artifacts that
can be used to achieve the system goals and properties identified at the co-construction
stage.

The dynamism between the levels is the key to frame both subjective and objective
coordination in the same context. This is captured by two basic transitions, the reflection
and the reification of coordination, which must be supported dynamically during system
execution:

Reification — In this transition, coordination laws designed and developed at the co-
operation stage are reified or objectified in coordination artifacts: intelligent agents
forge the behaviour of coordination artifacts in order to reflect the social rules estab-
lished in the co-operation stage, to be used as artifacts in the co-ordination stage. It
is worth noting that coordination artifacts are meant to embed not only rules promot-
ing cooperation among agents, but in general laws to rule their interaction. These
interaction rules are useful to represent also norms and environment constraints,
either mediating agent competitive (non cooperative) behaviour, or harnessing self-
interested agent behaviours so as to achieve global MAS goals without affecting
agent autonomy.

Reflection — In this transition, the behaviour of the coordination artifacts deployed
at the co-ordination stage is inspected and possibly understood. Agents (as well
as engineers) can retrieve the coordination laws underlying artifact behaviour, and
relate them to the history of MAS evolution, in order to either evolve them according
to changes in coordination policies or in environmental conditions, or learn how to
exploit the artifacts in a more effective and efficient way.

Coordination artifacts become then fundamental for dynamically balancing subjec-
tive and objective coordination, allowing the distribution of the coordination burden
between artifacts and agents to be defined at runtime. The capability of balancing task

202 A. Ricci, M. Viroli, and A. Omicini

automation and cooperation in a flexible way is among the most important requirements
for state-of-the-art systems for workflow management, supply chain management, and
CSCW [35, 36]. The ability to change the “engineering point” of coordination dynam-
ically is also of special importance for open MAS, where the environment can unpre-
dictably change, and the overall structure and functionality of the system may evolve in
time [37].

The above considerations lead to some additional requirements for coordination in-
frastructures. In particular, in order to support these capabilities, coordination infrastruc-
tures should provide the means (languages and tools) for enabling coordination reflection
(objective-to-subjective transition), to inspect the coordination laws defining coordina-
tion artifact behaviour, and coordination reification (subjective-to-objective transition),
defining and programming the behaviour of the coordination artifacts. TuCSoN – intro-
duced in section 6 – is an example of infrastructure supporting most of such requirements.

5.3 The Organisation Perspective: Structuring the Working Environment

Coordination artifacts can be suitably used in a structured and ruled organisation. Coordi-
nation artifacts become the entities around which the social activities are built, inducing
a natural form of organisation structuring and modelling. By abstracting from details,
several independent collaborative and cooperative activities are carried over inside an
organisation, each one charged upon a group of agents and a suitable coordination ar-
tifact. The group of agents can be thought as a sort of society (permanent or temporal)
with a specific objective, which is reflected by the structure and behaviour of the coor-
dination artifact. An organisation can be conceived then as a static as well as dynamic
set of societies, composed by agents playing some roles, characterised by different ways
of using the coordination artifact. Organisational models based on the notion of role are
pervasive in computer science as well as in the context of human organisation theories,
impacting also on security and coordination aspects; role-based access control (RBAC)
architectures – well-known in state of the art of security in information systems [38] –
have been recently introduced also in MAS to capture such aspects, framing organisation,
security and coordination in the same model [39].

Following the organisation perspective, coordination artifacts are the key to shape
agent working environment, as (i) tools for pure coordination, and (ii) interfaces me-
diating agent access to the resources and the services provided by the environment
itself. As mediating interfaces, coordination artifacts can encapsulate the policies for
resource management, involving the coordination of both the users and the resources or
the providers of the services.

The two issues above point out the fundamental role of artifacts in the design and
construction of an effective working environment, supporting agent activity toward the
achievement of their individual and social tasks. This is particularly relevant in the
context of cognitive theories applied for CSCW, such as Distributed Cognition [8]. In the
design and construction of a good working environment for the organisation the tension
between subjective and objective approaches emerges again in terms of the dichotomy
between flexibility – the capability of individuals of adapting to contingent situation – and
automation – the capability of making fluid the execution of activities. On the one side,
given the complexity and the openness of agent organisations, a working environment

Environment-Based Coordination Through Coordination Artifacts 203

keeps on evolving and requires flexibility in order to allow for supporting changes and
adaptations. The lack of flexibility dramatically impacts on all system activities. On
the other side, a good working environment should assist workers as much as possible
in their coordination, providing services to alleviate their coordination burden and let
them focus on their individual work. The lack of system coordination typically makes
organisations unable to govern the complexity of the activities: the end result is typically
a weak control of activities, and poor performances in their execution.

6 Toward Infrastructures for Coordination Artifacts

Coordination artifact infrastructures provide services for their access and use, effectively
supporting the co-operation and co-ordination levels and the reflection / reification tran-
sitions. Services range from artifacts creation, to inspection of their state and dynamic
adaptation of their coordinating behaviour.

In the overall, coordination artifacts can be seen then a fundamental abstraction for
realising governing infrastructures [33], i.e. infrastructure providing flexible and robust
abstractions to model and shape the agent interaction space, in accordance with the social
and normative objectives of systems. Infrastructures also represent an effective approach
to the general problem of formalisability of complex systems, which may come either
for pragmatical or theoretical issues. By their very nature, infrastructures intrinsically
encapsulate key portions of systems — often in charge of the critical system behaviour.
In this case, governing infrastructure encapsulate agent interaction and coordination
through coordination artifacts. As a result, providing well-specified infrastructures, and
in particular formally-defined coordination artifacts (as seen in section 4) promotes the
discovery and proof of critical system properties. Most notably, a system property can
be assessed at design-time through the formal definition of some design abstraction.
Then, by ensuring compliance of the corresponding run-time abstraction provided by
the infrastructure, such a property can be enforced at execution time and be automatically
verified for any system based on the infrastructure [40].

6.1 TuCSoN Coordination Infrastructure

TuCSoN [41] is a coordination infrastructure for MAS whose model brings the main
principles that characterise the coordination artifact framework2.

The infrastructure enables agent interaction and coordination by means of tuple cen-
tres, which here can be considered as a kind of coordination artifacts. Technically, tuple
centres are programmable tuple spaces – sort of reactive, logic-based blackboards that
agents access associatively by writing, reading, and consuming tuples – ordered collec-
tions of heterogeneous information chunks – via simple communication operations (out,
rd, in, inp, rdp) [24]. While the behaviour of a tuple space in response to communication
events is fixed, the behaviour of a tuple centre can be tailored to the application needs by
defining a set of specification tuples expressed in the ReSpecT language, which define

2 The TuCSoN technology is available as an open source project at the TuCSoN web site
http://tucson.sourceforge.net

204 A. Ricci, M. Viroli, and A. Omicini

Fig. 2. Overview of a multi-agent system exploiting TuCSoN. A MAS in TuCSoN is composed
by a dynamic set of agents (represented in the figure by a circle with an arrow) and tuple centres
(represented by a box with a line in the bottom), hosted by the nodes of the infrastructure. Each
agent can access and exploit the tuple centres by means of its ACC (represented by a semi-circle),
which enables and mediates agent actions on the environment. In theTuCSoN case such operations
are the basic coordination primitives on the tuple centres

how a tuple centre should react to incoming / outgoing communication events. So, unlike
from tuple spaces, tuple centres can be programmed with reactions so as to encapsulate
coordination laws directly in the coordination media.

From the topology point of view, TuCSoN coordination artifacts are collected in
infrastructure nodes (see Fig. 2), distributed over the network, organised into articu-
lated domains [42]. A domain is characterised by a gateway node and a set of nodes
called places. Briefly, a place is meant to host tuple centres for the specific applications
/ systems, while the gateway node is meant to host tuple centres used for domain admin-
istration, keeping information on the places. A place can belong to different domains,
and can be itself a gateway for a sub-domain.

So, tuple centres can be conceived as general-purpose coordination artifacts, which
can be customised (programmed, tuned) dynamically to entail a specific coordinating
behaviour. Generally speaking, tuple centres exhibit the properties that characterise coor-
dination artifacts: they provide different levels of inspectability – both the communication
and the coordination state can be inspected at runtime –, different levels of malleability
and controllability – both by changing dynamically their coordinating behaviour and

Environment-Based Coordination Through Coordination Artifacts 205

by controlling its execution by means of proper infrastructure tools [43]. Also, we can
identify the basic elements that characterise the abstract model of coordination artifacts:
the usage interface is composed by the basic coordination primitives plus the primitives
to inspect and change tuple centre behaviour (set spec and get spec). The coordination
behaviour specification is given by the ReSpecT specification. The notion of operating
instructions is not directly supported in tuple centres, even if the ReSpecT specification
tuples implicitly contain a description of how to exploit the tuple centre in order to obtain
the coordinating service.

Actually, in TuCSoN operating instructions are supported instead by another
infrastructural first class abstraction, the Agent Coordination Context (ACC), which has
recently extended the basic TuCSoN model to face also organisation and security issues
in synergy with coordination [44, 30]. Roughly speaking, in TuCSoN an ACC is an run-
time and stateful interface released to an agent to execute operations on the tuple centres
of a specific organisation. More generally, an ACC is a sort of interface provided to the
agent by the infrastructure to make it interact within a certain organisation environment.
A fundamental aspect is that an ACC is a ruled interface: it encapsulates and enforces
some security and organisation policies which define and constrain the space of the agent
allowed actions and protocols, according to the role(s) the agent is actively playing inside
the organisation. Also an ACC embodies the notion of work session of an agent inside
an organisation: an agent aiming at participating to the activities of an organisation – i.e.
accessing its tuple centres – must first request an ACC. If the request is compatible with
the organisation rules, an ACC properly configured with role policies is released to the
agent, which can then start working and interacting with tuple centres. So, if tuple centres
can be considered coordination artifacts encapsulating and applying global coordination
laws, ACCs can be framed as mediating artifacts embedding and enforcing local rules.

Finally, a key role in TuCSoN infrastructure is played by tools – which are essen-
tial for supporting online engineering methodology. In particular, the Inspector tool –
available with TuCSoN technology – makes it possible to dynamically inspect and con-
trol both the communication and coordination state of a tuple centre, including also the
possibility of tracing its coordinating behaviour [43]. Using an Inspector, engineers and
scientist can then observe, analyse, and control the runtime behaviour of a society of
agents by suitably inspecting and controlling the tuple centres used by the society.

6.2 Examples of Coordination Artifacts in TuCSoN

Coordination artifacts can be considered as units of reuse for engineering cooperative
working environments: as agents encapsulate skills and competences concerning the
execution of some task, the achievement of some goal or the solution of some problem,
coordination artifacts encapsulate strategies, knowledge and experiences for constructing
and ruling social activities.

In the following we describe some types of coordination artifacts commonly used
in the engineering of systems, implemented on top of TuCSoN. The properties of in-
spectability, controllability and malleability of tuple centres should be considered in the
background of all the examples: they are the key to conceive scenarios where the coop-
erative working environment can be analysed and improved at runtime, by inspecting
and adapting the coordinating behaviour of its coordination artifacts.

206 A. Ricci, M. Viroli, and A. Omicini

Coordination Artifacts for Communication. A common form of coordination arti-
facts is used to provide communication services, enabling the exchange of information
among agents in open and dynamic contexts which require a certain level of uncoupling
among the participants. In particular, coordination artifacts can be adopted to support
communication even if participants do know each other (identity uncoplying), if they
are not simultaneously taking part to the interaction (temporal uncoupling), if they do
not belong to the same spatial context or they ignore their mutual position (spatial un-
coupling).

A mailbox for instance can be adopted as an artifact supporting temporal and spatial
uncoupling among multiple senders and typically a single receiver, with some kind of
policy – e.g. FIFO – for storing and accessing the messages. Fig. 3 shows a tuple centre –
calledmailbox – instrumented to provide the services of a mailbox. The usage interface
accounts for an operation to insert new messages (by inserting a msg tuple), to retrieve
last message (by retrieving the tuple last msg), and to read the number of messages
available (by reading the tuple num messages). The tuple centre is programmed so
as to realise a FIFO policy for managing messages: the ReSpecT specification defining
tuple centre behaviour (shown in Fig. 3) basically indexes the messages as soon as they
are inserted in the mailbox, keeping track of the index of the first and last message,
and then using it to get last one on request. This policy could be adapted dynamically
according to the need, for instance adopting a strategy based on priorities or establishing
a maximum number of messages which can be stored in the mailbox.

Blackboards are another kind of well-known coordination artifacts, as shared spaces
of evolving knowledge where participants insert and access / retrieve information as-
sociatively. With respect to the original model developed in the context of DAI [45],
here control is distributed and encapsulated within agents, while the blackboard can
be programmed to have a reactive behaviour to manipulate knowledge according to
social rules shared and acknowledged by the agents. Tuple centres directly maps the
notion of blackboard: the coordination primitives are meta-predicates to insert, inspect
and retrieve knowledge in terms of logic tuples, forming a theory of communication.
ReSpecT specification tuples represent the reactive rules which manipulate the theory
of communication as a theory of coordination.

Coordination Artifacts for Knowledge Mediation. Coordination artifacts can be ex-
ploited to entail automated forms of knowledge mediation for managing heterogeneity
in open environments. As an example, we consider a tuple centre mediating the inter-
action between agents providing some services or information, and agents looking for
such services or related. As an abstract case, we suppose that an agent A needs to know
information pq(X,Y). According to some social knowledge – which is unknown to
agent A – the information can be constructed by aggregating knowledge represented by
tuple p(X) and q(Y), provided by other agents working as knowledge sources. The
tuple centre can be suitably programmed then to act as knowledge mediator, applying
the rules to construct the information pq from p and q:

reaction(rdp(pq(X,Y)), (
pre, rd_r(p(X)), rd_r(q(Y)), out_r(pq(X,Y)))).

reaction(rdp(pq(X,Y)), (
post, in_r(pq(X,Y)))).

Environment-Based Coordination Through Coordination Artifacts 207

reaction(out(msg(M)),(
in r(msg(M)),
in r(num messages(N)), N1 is N + 1, out r(num messages(N1)),
in r(last msg index(I)), I1 is I + 1,

out r(last msg index(I1)),
out r(msg(I1,M)))).

reaction(inp(last msg(M)),(pre,
in r(first msg index(I)), rd r(last msg index(N)), I < N,
I1 is I + 1, out r(first msg index(I1)),
in r(msg(I1,M)), out r(last msg(M)))).

reaction(inp(last msg(M)),(post, success,
in r(num messages(N)),N1 is N - 1,out r(num messages(N1)))).

Fig. 3. Mailbox tuple centre (Top) and its coordinating behaviour in ReSpecT Ê(Bottom)

Whenever a request for reading information pq is executed, the information is con-
structed dynamically by reading the content of the tuples p and q and inserted as a new
pq tuple in the tuple set to satisfy the request. The request fails if the information cannot
be constructed, because of the absence of p or q.

Coordination Artifacts for Resource Sharing. Resource and task sharing are among
the most common coordination problems in distributed and concurent systems. A work-

208 A. Ricci, M. Viroli, and A. Omicini

Fig. 4. Scheduler tuple centre

ing environment can be instrumented with coordination artifacts (tuple centres) designed
and programmed to provide some form of access policy in task or resource access, em-
bodying mechanisms and synchronisation strategies well-known in concurrent systems,
such as semaphores, synchronisation barries, monitors, etc.

As a simple example, we consider here a tuple centre used to act as a semaphore. The
P operation provided by a semaphore used to request and obtain access to the resource
can be realised by means on an in(sem) operation, i.e. retrieving a tuple sem from
the tuple centre; dually, the V operation used to manifest the release of the resource
can be realised by inserting back the tuple in the tuple set, by means of an out(sem).
To obtain the coordinating behaviour of a semaphore it is not necessary to program the
tuple centre, since the basic form of synchronisation directly provided by the in and
out coordination primitives is sufficient for the purpose. Programming the tuple centre
would instead be needed to obtain a more articulated and robust solution, for instance
allowing multiple agents to acquire the semaphore simultaneously.

CoordinationArtifacts forWorkflow Management. Workflow management concerns
the automated integration and coordination of heterogeneous and independent activities
involved in the same global business process. Among the others it includes activity
scheduling and synchronisation, information and control flow management, exception
management, and so on. Currently, in the context of service-oriented architectures – in
particular Web Services – workflow management is also called orchestration [46].

Typically, special purpose languages – XPDL, BPEL are examples – can be used to
define the workflow specification; their specification is executed by the workflow engine,
the core component of Workflow Management Systems.A workflow engine – also called
orchestration engine – can be framed here as a general purpose coordination artifact,

Environment-Based Coordination Through Coordination Artifacts 209

which is dynamically programmed to enact a coordinating behaviour according to the
workflow specification.

In the context of MASs, a tuple centre then can be programmed to provide the services
from a simple task scheduler up to a full-fledged general purpose workflow engine. As
an example, here we consider the realisation of a simple scheduler of three activities
– A, B and C – coordinated according a join pattern: task C can only start when both
tasks A and B have been completed. Tasks are executed by independent agents, typically
unaware of the global workflow and focussed on the achievement of their specific job.
The tuple centre scheduler shown in Fig. 4 is an example of a coordination artifact
providing such a scheduling service. The operation of the usage interface can be:

– in(task todo(+TaskName,-TaskInfo)), for taking in charge the execu-
tion of a task. The presence of a tuple task todo manifests the fact that a specific
task has to be done, according to current workflow.

– out(task result(+TaskName,+TaskResult)), for communicating the
result of the execution of a task, signaling its completion.

In the example, TaskName can be taskA, taskB or taskC. The operating in-
structions of this coordination artifact to be followed by agents in charge of task execution
would consist first in getting information about task, then in providing the result. Fig.
4 shows also the ReSpecT specification realising the scheduling behaviour: basically,
a suitable task todo tuple is automatically generated in the tuple set as soon as the
results of the execution of both tasks A and B are available.

In [47] the architecture of a workflow management system based on TuCSoN is
described, with tuple centres used as general purpose workflow engines.

7 Related Work

The coordination artifact framework discussed in this paper has been mostly inspired on
the one side directly by Activity Theory studies, and on the other side by the research
work developed in the context of coordination models, languages and architectures,
developed mainly in the field of concurrent systems [48, 49]. In particular the notion
of coordination artifact is strictly related to the programmable coordination medium
abstraction defined in [50], on which the tuple centre model is based. According to the
frequently adopted meta-model described in [51], a coordination model can be described
by identifying the coordinables – the entities participating to coordination activities –,
and the coordination media – the entities enabling and managing agent communica-
tion according to some coordination laws defining the semantics of the coordination
activities. Programmable coordination media extend the basic notion of coordination
medium by making its behaviour programmable with some specific language, so as to
flexibly specify the coordination rules according to the need. So, programmable coor-
dination media share some properties which characterise coordination artifacts, such
as encapsulation of coordination and malleability of the behaviour. Instead, differently
from programmable coordination media and coordination media in general, coordi-
nation artifacts do not manage necessarily communication among agents, but – more
generally – interactions caused by the execution of operations provided by the usage

210 A. Ricci, M. Viroli, and A. Omicini

interface. Also, the coordination artifact framework introduces some structural proper-
ties – such as operating instructions – which are new with respect to the classic co-
ordination meta-model, and which are indeed important in the context of open agent
societies.

The design and exploitation of cooperative working environment and related in-
frastructures for supporting coordination activities are central themes in the context of
CSCW [7]. Here, the expressiveness and effectiveness of coordination through mech-
anisms mediating human interaction have been clearly remarked, and related models,
languages and infrastructures have been developed [52, 53]. Coordination artifacts fea-
ture some of the basic properties of coordinative artifacts defined in such contexts [7]
– in particular the properties concerning malleability and linkability –, contextualising
and extending them for the MAS context. Operating instructions, for instance, are part
of the extension.

Finally, the coordination artifact framework can be exploited as an analytical tool for
describing existing coordination approaches based on some form of mediated interac-
tion and environment-based coordination. For instance, the environment provided by the
pheromone infrastructure in [12] supporting stigmergy coordination can be interpreted
as a coordination artifact exploited by ants to coordinate: as such, it provides operations
for depositing and sensing pheromones, and the coordinating behaviour is given by the
environmental laws ruling the diffusion, aggregation and evaporation of pheromones.
Analogously, the field abstraction in the co-field approach [54] – a recent approach for
engineering of swarm intelligent systems – can be seen as a coordination artifact, medi-
ating mobile agents interaction and supporting their coordinated navigation inside some
kind of space. Also some coordination approaches developed in the context of intelli-
gent / cognitive agents can be framed in terms of coordination artifacts. An example is
the TEAMCORE model / infrastructure [55], which provides a coordination support to
teams composed by heterogeneous agents – including agents with no teamwork capabil-
ities. Here, each agent of a team is provided with a STEAM module, a sort of a proxy of
the TEAMCORE infrastructure which mediate agent interactions and generate suitable
communication actions according to a global plan specification. A STEAM module can
be then understood as a coordination artifact, whose coordinating behaviour is essential
for the achievement of the team goals.

8 Conclusion

In the context of human activities and CSCW Activity Theory and Distributed Cognition
remark the importance of the environment – and in particular of the tools available in the
environment – for governing the complexity of cooperative / social work, in particular for
its analysis and construction. Analogously, the framework of coordination artifacts aims
at providing an engineering key for instrumenting a MAS working environment with first
class abstractions which could help agents of a MAS to cooperate and coordinate. Such
first class abstractions are meant to be exploited in the various stage of the engineering
process in agent-oriented software engineering methodologies: at the design stage, as
modelling entities for designing social activities; at development and runtime stage, as
runtime abstractions – supported by suitable infrastructures – to be used by agents to

Environment-Based Coordination Through Coordination Artifacts 211

execute the social activities; and at runtime stage also for online engineering of systems,
as inspectable, malleable abstractions which can be dynamically observed, controlled,
adapted – by human as well as by intelligent agents – to support online debugging and
evolution of the activities.

Several issues will be subject of investigation in future work. Among the other: (i)
the extension of an existing methodology – SODA [56] – with the coordination arti-
fact framework, in particular identifying the role of the co-construction / co-operation /
co-ordination stages, essential for supporting the online engineering approach; (ii) the
extension ofTuCSoN infrastructure model, design and technology, so as to fully support
the coordination artifact vision, in particular framing and implementing the notion of
operating instructions for tuple centres; (iii) the (offline and online) verification of for-
mal properties of coordination activities, exploiting the well-founded formal semantics
of TuCSoN coordination artifacts, i.e. tuple centres; and finally, (iv) the benefits and
effectiveness of the framework in engineering real-world systems, exploiting TuCSoN
as the basic infrastructure technology.

References

1. Parunak, H.V.D., Brueckner, S., Fleischer, M., Odell, J.: A preliminary taxonomy of multi-
agent interactions. In: 2nd International Joint conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2002), ACM Press (2003) 1090–1091

2. Fenster, M., Kraus, S., Rosenschein, J.S.: Coordination without communication: Experimen-
tal validation of focal point techniques. In: 1st International Conference on Multi-Agent
Systems (ICMAS’95), AAAI (1995) 102–108

3. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The coordination
viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents VI. Agent Theories,
Architectures, and Languages. Volume 1757 of LNAI., Springer-Verlag (2000) 250–259

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999)

5. Steels, L.: The artificial life roots of Artificial Intelligence. Artificial Life Journal 1 (1994)
89–125

6. Ferber, J., Müller, J.P.: Influences and reaction: a model of situated multiagent systems. In:
2nd International Conference on Multi-Agent Systems (ICMAS’96). (1996)

7. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foundation of
CSCW systems design. International Journal of Computer Supported Cooperative Work
(CSCW) 5 (1996) 155–200

8. Kirsh, D.: Distributed cognition, coordination and environment design. In: European confer-
ence on Cognitive Science. (1999) 1–11

9. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer Interaction.
MIT Press (1996)

10. Vygotsky, L.S.: Mind and Society. Harvard University Press (1978)
11. Cost, S.R., Labrou, Y., Finin, T.: Coordinating agents using agent communication languages

conversations. [57] chapter 7 183–196
12. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for coordination

of unmanned vehicles. In: 1st International Joint Conference on Autonomous Agents and
Multiagent Systems AAMAS’02, ACM Press (2002) 449–450

212 A. Ricci, M. Viroli, and A. Omicini

13. Esteva, M., Rosell, B., Rodríguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based middle-
ware for electronic institutions. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M., eds.:
3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004). Volume 1., New York, USA, ACM (2004) 236–243

14. Ricci, A., Omicini, A., Denti, E.: Activity Theory as a framework for MAS coordination. In
Petta, P., Tolksdorf, R., Zambonelli, F., eds.: Engineering Societies in the Agents World III.
Volume 2577 of LNCS. Springer-Verlag (2003) 96–110

15. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In Jennings, N.R., Sierra, C., Sonen-
berg, L., Tambe, M., eds.: 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004). Volume 1., New York, USA, ACM (2004) 286–293

16. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing
Surveys 26 (1994) 87–119

17. Omicini, A., Ricci, A., Viroli, M., Cioffi, M., Rimassa, G.: Multi-agent infrastructures for
objective and subjective coordination. Applied Artificial Intelligence 18 (2004) 815–831
Special Issue: Best papers from EUMAS 2003: The 1st European Workshop on Multi-agent
Systems.

18. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction. In Jen-
nings, N.R., Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1., New York, USA,
ACM (2004) 286–293

19. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: Theory and practice. The Knowledge
Engineering Review 10 (1995) 115–152

20. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. North-Holland,
Amsterdam, London, New York, Oxford, Paris, Shannon and Tokyo (2001)

21. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathe-
matik, University of Bonn, Bonn, Germany (1962)

22. Berry, G., Boudol, G.: The chemical abstract machine. In: 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM Press (1990) 81–94

23. Durfee, E.H.: Scaling up agent coordination strategies. IEEE Computer 34 (2001)
24. Omicini,A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Programming

41 (2001) 277–294
25. Dennett, D.: The Intentional Stance. Bradford Books/MIT Press, Cambridge, MA (1987)
26. Broy, M., Olderog, E.R.: Trace-oriented models of concurrency. In: Handbook of Process

Algebra. North-Holland (2001) 101–195
27. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
28. Kinny, D., ed.: The Psi Calculus: An Algebraic Agent Language. In Kinny, D., ed.: Intelligent

Agents VIII, 8th International Workshop, ATAL 2001 Seattle, WA, USA, August 1-3, 2001,
Revised Papers. Volume 2333 of Lecture Notes in Computer Science., Springer (2002)

29. van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: A verification framework for
agent communication. Autonomous Agents and Multi-Agent Systems 2 (2003) 185–219

30. Ricci, A., Viroli, M., Omicini, A.: Agent coordination context: From theory to practice. In
Trappl, R., ed.: Cybernetics and Systems 2004. Volume 2., Vienna, Austria, Austrian Society
for Cybernetic Studies (2004) 618–623 17th European Meeting on Cybernetics and Systems
Research (EMCSR 2004), Vienna, Austria, 13–16 April 2004. Proceedings.

31. Conte, R., Castelfranchi, C.: Cognitive and Social Action. University College London (1995)
32. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.: Agent-oriented software engi-

neering for internet applications. [57] chapter 13 369–398

Environment-Based Coordination Through Coordination Artifacts 213

33. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineering of
agent systems. In Klusch, M., Bergamaschi, S., Edwards, P., Petta, P., eds.: Intelligent Infor-
mation Agents: An AgentLink Perspective. Volume 2586 of LNAI: State-of-the-Art Survey.
Springer-Verlag (2003) 179–202

34. Schumacher, M.: Objective Coordination in Multi-Agent System Engineering – Design and
Implementation. Volume 2039 of LNAI. Springer-Verlag (2001)

35. Dayal, U., Hsu, M., Rivka, L.: Business process coordination: State of the art, trends and
open issues. In: 27th VLDB Conference, Rome, Italy (2001)

36. Nutt, G.: The evolution toward flexible workflow systems. Distributed Systems Engineering
3 (1996) 276–294

37. Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineering of
multiagent systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Kluwer Academic Publishers (2004) 273–296

38. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based control models. IEEE
Computer 29 (1996) 38–47

39. Ricci, A., Viroli, M., Omicini, A.: Role-Based Access Control in MAS using Agent Coordi-
nation Contexts. In Dignum, V., Corkill, D., Jonker, C., Dignum, F., eds.: 1st International
Workshop “Agent Organizations: Theory and Practice” (AOTP’04), AAAI-04, San José, CA,
USA, AAAI Press (2004) 15–22 Proceedings.

40. Omicini, A., Ricci, A., Viroli, M.: Formal specification and enactment of security policies
through Agent Coordination Contexts. In Focardi, R., Zavattaro, G., eds.: Security Issues in
Coordination Models, Languages and Systems. Volume 85(3) of Electronic Notes in Theo-
retical Computer Science. Elsevier Science B. V. (2003)

41. Omicini,A., Zambonelli, F.: Coordination for Internet application development. Autonomous
Agents and Multi-Agent Systems 2 (1999) 251–269

42. Cremonini, M., Omicini, A., Zambonelli, F.: Multi-agent systems on the Internet: Extending
the scope of coordination towards security and topology. In Garijo, F.J., Boman, M., eds.:
Multi-Agent Systems Engineering. Volume 1647 of LNAI., Springer-Verlag (1999) 77–88
9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAA-
MAW’99), Valencia (E), 30 June – 2 July 1999, Proceedings.

43. Denti, E., Omicini, A., Ricci, A.: Coordination tools for MAS development and deployment.
Applied Artificial Intelligence 16 (2002) 721–752 Special Issue: Engineering Agent Systems
– Best of “From Agent Theory to Agent Implementation (AT2AI-3)”.

44. Omicini, A., Ricci, A.: MAS organisation within a coordination infrastructure: Experiments
in TuCSoN. In Omicini, A., Petta, P., Pitt, J., eds.: Engineering Societies in the Agents World
IV. Volume 3071 of LNAI. Springer-Verlag (2004) 200–217 4th International Workshop
(ESAW 2003), London, UK, 29–31 October 2003. Revised Selected and Invited Papers.

45. Corkill, D.: Blackboard systems. Journal of AI Expert 9 (1991) 40–47
46. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36 (2003) 46–52
47. Ricci, A., Omicini, A., Denti, E.: Virtual enterprises and workflow management as agent

coordination issues. International Journal of Cooperative Information Systems 11 (2002)
355–379 Special Issue: Cooperative Information Agents – Best Papers of CIA 2001.

48. Papadopoulos, G.A.: Models and technologies for the coordination of Internet agents: A
survey. In Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of
Internet Agents: Models, Technologies, and Applications. Springer-Verlag (2001) 25–56

49. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Advances in Computers
46 (1998) 329–400

214 A. Ricci, M. Viroli, and A. Omicini

50. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In Garlan, D.,
Le Métayer, D., eds.: Coordination Languages and Models – Proceedings of the 2nd Inter-
national Conference (COORDINATION’97). Volume 1282 of LNCS., Berlin (D), Springer-
Verlag (1997) 274–288

51. Ciancarini, P.: Coordination models and languages as software integrators. ACM Computing
Surveys 28 (1996) 300–302

52. Cortes, M.: A coordination language for building collaborative applications. International
Journal of Computer Supported Cooperative Work (CSCW) 9 (2000) 5–31

53. Agostini, A., De Michelis, G., Grasso, M.A.: Rethinking CSCW systems: The architecture of
MILANO. In: European Conference on Computer Supported Cooperative Work (ECSCW),
Kluwer (1997)

54. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a unifying approach to the
engineering of swarm intelligent systems. In Petta, P., Tolksdorf, R., Zambonelli, F., eds.:
Engineering Societies in theAgents World III.Volume 2577 of LNCS. Springer-Verlag (2003)
68–81

55. Pynadath, D.V., Tambe, M.: Automated teamwork among heterogeneous software agents
and humans. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) (2003)
71–100

56. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented Software Engineering.
Volume 1957 of LNCS., Springer-Verlag (2001) 185–193

57. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of Internet Agents:
Models, Technologies, and Applications. Springer-Verlag (2001)

“Exhibitionists” and “Voyeurs” Do It Better: A
Shared Environment for Flexible Coordination

with Tacit Messages

Luca Tummolini1, Cristiano Castelfranchi1, Alessandro Ricci2,
Mirko Viroli2, and Andrea Omicini2

1 Institute of Cognitive Sciences and Technologies, CNR
viale Marx 15, 00137 Roma, Italy
{tummoli, castel}@ip.rm.cnr.it

2 DEIS, Università degli Studi di Bologna,
via Venezia 52, 47023 Cesena, Italy

{aricci, mviroli, aomicini}@deis.unibo.it

Abstract. Coordination between multiple autonomous agents is a ma-
jor issue for open multi-agent systems. This paper proposes the notion
of Behavioural Implicit Communication (BIC) originally devised in hu-
man and animal societies as a new and critical coordination mechanism
also for artificial agents. BIC is a parasitical form of communication that
exploits both some environmental properties and the agents’ capacity
to interpret their actions. In this paper we abstract from the agents’
architecture to focus on the interaction mediated by the environment.
Observability of the environment – and in particular of agents’ actions –
is crucial for implementing BIC-based form of coordination in artificial
societies. Accordingly in this paper we introduce an abstract model of
environment providing services to enhance observation power of agents,
enabling BIC and other form of observation-based coordination. Also, we
describe a typology of environments and examples of observation based
coordination with and without implicit communication.

1 Introduction

In this paper we advance the notion of Behavioural Implicit Communication
(BIC) as a kind of communication that does not involve specific codified actions
aimed only at communication [1]. We have BIC when usual practical actions
are contextually used as messages for communicating. We argue that providing
agents with an environment enabling BIC eases coordination achievement [2] also
because it can enable a more flexible form of communication between agents.

BIC is a critical coordination mechanism that is mainly responsible for the
overall social order of human societies. A sub-category of BIC, commonly known
as stigmergy [3], is shared also with animal societies, and is widely considered as
a necessary means to achieve coordination without a central control. Stigmergy
has been proposed also as a model of decentralised coordination for Multi-Agent
Systems [4], and it is usually characterised as a form of communication mediated

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 215–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 L. Tummolini et al.

by the environment which simply needs ant-like agents. BIC is proposed as a
general framework able to provide a more comprehensive theory that covers also
intentional BDI agents.

This paper focuses on the basic properties / services which can be used to
instrument an agent (working) environment so as to support BIC and other
observation-based forms of coordination. In other words we are looking for an
abstract model of environment which could provide a systematic support to BIC,
which could be exploited by MAS for their heterogeneous cooperative activities.
In this paper a formal specification of such a model will be provided, so as to
(i) making unambiguous the description of observation-form of coordination, (ii)
making easier its engineering on top of MAS infrastructure, (iii) enabling form
of automated reasoning on the dynamic behaviour of the MAS exploiting the
services provided by the environment.

Approaches to coordination have been recently classified in two main cate-
gories: subjective and objective coordination [5, 6]. Subjective approaches rely on
the viewpoint of the individual agent that can “perceive” and understand the ac-
tions of its peers. For instance, agents can agree on a coordinated plan thanks to
explicit communication [7] or plan recognition [8, 9]. However, what does it mean
in this approaches that an agent can “perceive” or “observe” another agent? Do
perception and observation always imply a form of communication between the
two agents? On the other hand, objective approaches are mainly concerned with
the viewpoint of an observer that is external to the agents. According to this
interpretation, coordination is instilled in multi-agent systems by means of ad
hoc abstractions, often termed as coordination artifacts [10], that mediate agent
interactions. Coordination artifacts globally affect the behaviour of a multi-agent
system, and are typically provided by agent coordination infrastructures [11, 12]
that shape the environment where agents live and interact.

The remainder of the paper is structured as follows. In Section 2 we sum-
marise what Behavioural Implicit Communication is, and why it is relevant for
coordination in a multi-agent system. Section 3 focuses on the role of the environ-
mental properties that can enable BIC, in particular the capacity of the environ-
ment to affect the observability of agents’ actions: we advance a notion of shared
environment and formalise a first typology. In Section 4 we provide a formal
characterisation for multi-agent systems based on the notion of shared environ-
ment and BIC, and in Section 5 we show its usefulness in modelling properties
of BIC and other scenarios. Section 6 describes how forms of observation-based
coordination can be realised by exploiting the observability features provided
by shared environments. Finally, Section 7 concludes trying to identify a path
toward a future implementation of the shared environment.

2 Behavioural Implicit Communication for Coordination

2.1 Interaction Is not Always Communication

There is a sense in which the famous claim of the Palo Alto psychotherapy school
“any behaviour is communication” [13] is true: in artificial multi-agent system,

“Exhibitionists” and “Voyeurs” Do It Better 217

interaction with other agents or with the environment is usually implemented
in terms of a message passing protocol, typically “wrapping” non-agent environ-
mental resources to shape them as agents. Even the only widespread standards
for agent technologies, provided by FIPA, currently account for speech acts only,
neglecting in practice physical acts of any form [14].

However, interaction via messages is not the only viable solution to achieve
coordination. As a more powerful framework, indirect interaction has been pro-
posed [15] as a way to implement stigmergy for MAS societies. Decentralised
coordination would be achieved thanks to interaction via persistent observable
state changes. Indirect interaction is modelled on the pheromone metaphor: to
find the shortest way to reach food ants mark their trail with a pheromone
that is attractive for other ants [16]. However from a functional perspective,
even a pheromone is a message, like one written on a blackboard. Everyone
autonomously accessing the blackboard can read the message and act upon it.

While we will also argue for having persistence and observability of changes
in the agents’ environment as necessary requirements for having global coor-
dination, we strive for a coordination mechanism which does not rely only on
explicit codified communication. In fact not all kinds of communication exploit
codified (and hence rigid) actions. Our claim is that human and animals are
able to communicate also without a predefined conventional language, and this
capacity should be also instilled into artificial agents.

In order to distinguish it from mere interaction, we define communication as a
process where information arriving from agent X (Sender) to agent Y (Receiver)
is aimed at informing Y. X’s behaviour has the goal or the function of informing
Y. X is executing a certain action “in order” to have other agents receiving
a message and updating their beliefs or epistemic state. Communication is an
intentional or functional notion in the sense that it is always goal oriented such
that a behaviour is selected also for its communicative effect.1

While we agree with [17] that coordination can be seen as a causal process of
correlation between agents’ actions always involving an information flow between
an agent and its environment, we do not consider always this flow as a process
of communication. Consider a case where an hostile agent, whose actions are
“observable”, is entering a MAS. If another agent becomes aware of his presence
and can observe him, should we say that the hostile agent is communicating his
position? Or, differently, is the escaping prey communicating to the predator her
movements?

1 An agent’s behaviour can be goal oriented for different reasons. An intentional agent
(i.e. a BDI agent) is a goal governed agent (the goal is internally represented) which
instantiates a communicative plan to reach the goal that another agent is informed
about something. However also simple reactive agents (i.e. insect-like) can act pur-
posively (hence can communicate) if their behaviour has been shaped by natural
or artificial selection, by reinforcement learning or by design (in the interest of the
agent itself). In these latter cases the behaviour has the function of communicating
in the sense that it has been selected because of a certain communicative effect.

218 L. Tummolini et al.

When reasoning about agents we should be at the agents’ level of explana-
tion. There are at least two different viewpoints that need to be disentangled:
the agent’s and the designer’s [6]. Relative to the agents’ world, the designer
acts as Natural Selection or God does on our world. Even in the case that an
agent’s perception of the action of another agent is actually implemented as an
information passed from a sender to a receiver, this should not be necessarily
considered as a form of “communication”, and correspondingly the information
passed should not be necessarily labelled as a “message”.

From the external viewpoint of the designer a message passing of this sort
is designed in order to inform the agent who is observing. However from the
viewpoint of the agent a simple perception is not necessarily communication.

2.2 Communication Is not Always Explicit

Communication is normally conceived as implemented through specialised ac-
tions such as those defined in the FIPA ACL protocol [18]. Such protocols are
inspired by natural language or expressive signals where meaning is associated
to a specific action by convention.

What about the case where the agent is aware of being observed (other agents
believe that he is performing a given practical action) and he “intends that”
[7] the others are interpreting his action? This sort of communication without
a codified action but with a communicative intention is what we intend for
Behavioural Implicit Communication [1]. What is relevant here is that the agent’s
execution plan is aimed to achieve a pragmatic goal as usual: i.e. an agent A is
collecting trash to put it in a bin (as in [8]).

To implicitly communicate, the agent should be able to contextually “use”
(or learn to use or evolve to use) the observed executed plan also as a sign, the
plan is used as a message but it is not shaped, selected, or designed to be a
message.

An agent B has the same goal but observing the other’s action he decides
to clean the other side of the road. Since the agent A knows that an agent B is
observing him, the practical action he is executing can be used also as a message
to B such as “I am cleaning here”. Such a possibility can lead agents to avoid
a specific negotiation process for task allocation and can finally evolve in an
implicit agreement in what to do.

There seems to be at least three different conditions to support such a form
of communication.

– The first is relative to environmental properties. The “observability” of the
practical actions and of their traces is a property of the environment where
agents live. One environment can “enable” the visibility of the others while
another can “constrain” it, in the same way that sunny or foggy days affect
our perception. An environment could also enable an agent to make himself
observable or on the contrary to hide his presence on purpose.

– The second is related to the capacity of agents to understand and interpret
(or to learn an appropriate reaction to) a practical action. A usual prac-
tical action can be a message when an agent knows the way others will

“Exhibitionists” and “Voyeurs” Do It Better 219

understand his behaviour. The most basic message will be that the agent is
doing the action α. A more sophisticated form would imply the ability to
derive pragmatic inference from it (what is the goal of doing? What can be
implied?).

– The third condition is that the agent should be able to understand (and
observe) the effect that his actions has on the others so that he can be-
gin acting in the usual way also because the other understand it and react
appropriately.

Behavioural Implicit Communication is in this sense a parasitical form of com-
munication that exploits a given level of visibility and the capacity of the others
to categorise or react to his behaviour.

A general definition for BIC is:

the agent (source) is performing a usual practical action α but he also
knows and lets or makes the other agent (addressee) observe and un-
derstand such a behaviour, i.e. to capture some meaning μ from that
“message”, because this is part of his (motivating or non motivating)
goals in performing α.

2.3 BIC Is not Always Stigmergy

The need for an environment for a multi-agent system is often associated with
the goal of implementing stigmergy as a decentralised coordination mechanism.
Besides, being the production of a certain behaviour as a consequence of the
effects produced in the local environment by previous behaviour or indirect com-
munication through the environment [4], stigmergy seems very similar to the
form of communication we are arguing for.

However these general accepted definitions makes the phenomenon too broad.
It is too broad because it is unable to distinguish between the communication and
the signification processes. As we have seen in Subsection 2.1 we do not want
to consider the hostile agent’s actions or the escaping prey as communicative
actions notwithstanding that the effects of their actions elicit and influence the
actions of other agents. Besides, every form of communication is mediated by the
environment exploiting some environmental channel (i.e. air for audio signals).

As in BIC, real stigmergic communication does not exploit any specialised
communicative action but just usual practical actions (i.e. the nest building
actions). In fact we consider stigmergy as a subcategory of BIC, being commu-
nication via long term traces, physical practical outcomes, useful environment
modifications which preserve their practical end but acquire a communicative
function. In this perspective, stigmergy to a special form of BIC where the ad-
dressee does not perceive the behaviour (during its performance) but perceives
other post-hoc traces and outcomes of it.

Usually stigmergy is advocated as a coordination mechanisms that can achieve
very sophisticated forms of organisation with no need for intelligent behaviour.
However there also exist interesting form of stigmergic communication at the
intentional level. Consider a sergeant who – while crossing a mined field – says

220 L. Tummolini et al.

“walk on my prints!” to his soldiers. From that very moment any print is a mere
consequence of a step, plus a stigmergic (descriptive “here I put my foot” and
prescriptive “put your foot here!”) message to the followers.

2.4 Coordination Is not Always Cooperation

Coordination is that additional part or aspect of the activity of an agent specif-
ically devoted to deal and cope with the dynamic environmental interferences,
either positive or negative, i.e. with opportunities and dangers/obstacles [19].
Coordination can be non social as when an agent coordinate with a moving
object. For instance, it can be unilateral, bilateral and reciprocal (see Fig. 1)
without being cooperative as when a leopard curves left and right and acceler-
ates or decelerates on the basis of the observed path and moves of its escaping
prey; but at the same time the gazelle jumps left or right and accelerates or not
in order to avoid the leopard and on the basis of the observed moves of it. This is
an observation based but not a communication/message based (BIC) reciprocal
coordination.

For the goals of this paper, we distinguish five different forms of coordination:

Unilateral — X intends to coordinate with Y by observing Y ’s actions.
Bilateral — In this case we have the unilateral form of coordination for both

agents, so: X intends to coordinate with Y by observingY ’s actions, and
viceversa: Y intends to coordinate with X by observing X ’s actions.

Unilateral-AW — In this case we have a unilateral form of coordination, but
with a first form of awareness: X intends to coordinate with Y by observing
Y ’s actions, and Y is aware of it (i.e. knows to be observed).

Reciprocal — In this case the we have both a bilateral form of observation
based coordination and awareness by both the agents: X intends to coor-
dinate with Y by observing Y ’s actions, Y is aware of it, Y intends to
coordinate with X by observing X ’s actions and X is aware of it.

Mutual — This case extends the reciprocal form by introducing the explicit
awareness of each other intention to coordinate: X intends to coordinate with
Y by observing Y ’s actions, Y is aware of it, Y intends to coordinate with
X by observing X ’s actions, X is aware of it, X is aware of Y ’s intention to
coordinate, and Y is aware of X ’s intention to coordinate.

Behavioural implicit communication is necessary for mutual coordination while
it is possible and useful in the other kinds of observation-based coordination.

3 Toward a Shared Environment: Objective and
Intentional Observability

The goal of this paper is to instrument an agent working environment with prop-
erties and services that can enable the observation-based forms of coordination
discussed above, BIC in particular. In other words, we aim at defining an ab-
stract model of an agent environment, which could be engineered on top of a

“Exhibitionists” and “Voyeurs” Do It Better 221

Fig. 1. Forms of coordination in relation to observation capability and awareness

MAS infrastructure, so as to be exploited by agents living in the MAS to ex-
ploit BIC for their cooperation. Given this objective, it will be fundamental to
identify a formal model of this support, in order to ease its engineering on top
of existing MAS infrastructures: accordingly in this section the abstract model
of the shared environment enabling observability is introduced and in Section 4
its formal semantics is described.

Agents that live in a common environment (c-env) are agents whose actions
and goals interfere (positively or negatively) and need coordination to manage
this interference. In a pure c-env, actions and their traces are state transitions
that can ease or hamper the individual agents’ goals. An example is a ground that
is common for different insects species but where no interspecies communication
is possible. Agents can observe just the state of the environment and act on that
basis without having access to the actions of their peers. Even a trace is seen as
part of the environment and not as a product of other agents. A general property
of a c-env is that it enables agents to modify its state and keep track of it.

We propose a notion of shared environment (s-env), that is a particular case
of a c-env that enables (1) different forms of observability of each other action
executions, as well as (2) awareness of this observability. These features will be
shown to support (unilateral, bilateral, reciprocal, mutual) coordination.

3.1 Observability in Shared Environments

Each s-env is defined by the level of observability that it can afford. The level
of observability is the possibility for each agent to observe, i.e. to be informed
about, another agent’s actions or their traces.

222 L. Tummolini et al.

The most general kind of s-env can defined by the fact that each agent
accessing it can observe all the others and is observable by them. A prototypical
model of this sort of environment is the central ‘square’ of a town.

The level of observability of an s-env is formalised by a relation Pow : A ×
A×Act, where A is the set of agents and Act is the set of usual practical actions.
When 〈x, y, α〉 ∈ Pow , also written Pow(x, y, α), it means that action α ∈ Act
executed by agent y is observable by agent x. In this case x has the role of
observer agent and y that of observed agent. This means that in that s-env, it
is possible for x to observe the actions of y. More generally, Pow(x, B, α) holds
for the set B ⊆ A of agents which x has the power to observe through action
α, and similarly, Pow(B, y, α) holds for the set B ⊆ A of agents that have the
power to observe executions of α by agent y.

Pow relation can be then conceived as rules that define the set of ‘opportunity
and constraints’ that afford and shape agents’ observability within the environ-
ment. A specific rule is an opportunity or a constraint for a specific agent and
in particular it is only relative to the agent’s active goals while interacting with
that environment.

A public s-env transfers to an agent a specific observation power : the power
to be informed about others’ actions. So, as the relation Pow is introduced to
statically describe the set of opportunities and constraints related to agents’ ob-
servability, a relation Obs (a subset of Pow) has to be introduced to characterise
the state of the s-env at a given time, so that Obs(x, y, α) means that agent x is
actually observing executions of action α by agent y. That is, Obs(x, y, α) means
that an execution of action α by agent y will be perceived by x.

To take into account the agent’s viewpoint over observation, we introduce
the concept of agent epistemic state (ES), representing the beliefs the agent has
because of his observation role. The ES of an agent x includes its environmental
knowledge which is then given by information (i) on the agents he is observing,
(ii) on the agents that are observing him, and (iii) on the action executions that
he is observing. We generalise, and write Bzobs(x, y, α) for agent z believing
that x is observing executions of action α by z, and Bxdone(y, α) for x believing
that y has executed action α.

3.2 Observation Is Interaction with the Environment via Epistemic
Actions

The epistemic state of an agent evolves through epistemic actions, which are ac-
tions aimed at acquiring knowledge from the environment [20]. In our framework
epistemic actions are formalised as a class of interactions with the environment.
Typically, an epistemic action is fired by an agent intention, by which the s-env
reacts updating the epistemic state of the agent. To model agent’s intention,
we introduce the concept of motivational state: besides the epistemic state, an
agent is characterised by a motivational state (MS).

A first case of epistemic action is used by the agent which is willing to know
whether he is observing another agent, whether another agent is observing him,
or generally, whether an agent x is observing an agent y. So, suppose the MS of

“Exhibitionists” and “Voyeurs” Do It Better 223

z includes intention Izcheck(x, y, α), which means that agent z intends to know
whether x observes executions of α by y. At a given time, an epistemic action
is executed by which the ES of agent z will include the belief about whether
Obs(x, y, α) holds or not.

Similarly, an agent may have the intention Ixobs(x, y, α) in exploiting the
observability power of the environment to observe y’s actions α. The inten-
tion activates the observation service provided by the s-env, causing: (i) the
Bxobs(x, y, α) knowledge to be added to agent’s epistemic state (i.e. agent x
knows that he is observing actions by agent y); (ii) the element Obs(x, y, α) to
be added to the set defining Obs relation (meaning that the s-env enables the
observation for agent x of actions α executed by agent y) In other words, we can
think that the appearance of an intention in the motivation state of the agent
causes the execution of an epistemic action toward the environment, enabling
agent observations.

Similarly, an agent may want to stop observing actions. When the intention
Ixdrop(x, y, α) appears in the agent motivational state, the effects of obs(x, y, α)
are reversed, i.e. no longer the agent continues to observe action α in the future.

Now we are ready to link the MS state of the agent, Obs rules and the ES
state of the agent: according to the semantics of the actions, the execution of an
action α by agent y (denoted as done(y, α)) causes the creation of a new belief
Bxdone(y, α) in the epistemic state of all the agents x of the environment such
that Obs(x, y, α) holds.

4 Formal Model

In the following, we provide a syntax and an operational semantics for modelling
MAS according to the conceptual framework defined in previous sections. This
formalisation has the primary goal of been a precise description of the concepts
described in previous section, and of their impact on the dynamic evolution of
a MAS. Then, given the operational character of the model, it can be used as
an abstract reference implementation for an infrastructure supporting s-envs, as
well as to pave the way towards the application of some analysis tool.

We let metavariables x, y, z range over agent identifiers, and α, β over usual
practical actions.

The syntax of MAS configurations is as follows:

S ::= 0 | A | E | S ||S MAS Configuration

A ::= 0 Agent Configuration
| Bxφ Belief of x
| Ixφ Intention of x
| A ||A Composition

E ::= 0 Environment Configuration
| Pow(x, y, α) x has the power to observe y’s α
| Obs(x, y, α) x is observing y’s α
| E ||E Composition

224 L. Tummolini et al.

φ ::= Formulas
obs(x, y, α) x is observing y’s α

| coord(x, y, α) x coordinates with y through α
| check(x, y, α) check whether x is observing y’s α
| drop(x, y, α) prevent x from observing y’s α
| done(x, α) x executes actions α
| ¬φ | Ixφ | Bxφ Structured formulas

The operator for parallel composition is assumed to be commutative, associative,
and to absorb the empty configuration 0.

The metavariable S ranges over configurations of the MAS, which at our
abstraction level are a parallel composition of agent configurations and envi-
ronment configurations. Environment configurations are parallel composition of
terms, each denoting either the power of agent x to observe action α executed by
agent y (Pow(x, y, α)), or the fact that the environment is currently supporting
the fact that x is observing action α executed by agent y (Obs(x, y, α)). Agent
configurations are parallel compositions of mental properties, namely beliefs (B)
and intentions (I) qualified by the agent x, and about a formula φ. Notice that
we model a MAS configuration as a multiset of either agent and environment
properties, without a separation, by simply following the abstraction process
induced by the formalism adopted.

A formula φ can be believed and/or intended by an agent. Atomic formulas
are: (i) obs(x, y, α), used to express that x is observing executions of α by y,
(ii) coord(x, y, α), used to express that x coordinates its behaviour with y by
observing executions of α, (iii) check(x, y, α), used to check if x is observing
executions of α by y, (iv) drop(x, y, α), used to prevent x from observing exe-
cutions of α by y, and (v) done(x, α), used to express an that x executes/has
executed α. Moreover, formulas can be structured ones: ¬φ expresses negation
of φ, Ixφ and Bxφ that agent x intends/believe φ, respectively. A number of as-
sumptions on such formulas are clearly to be made as usual, e.g. that ¬¬φ ≡ φ or
Bxφ ≡ BxBxφ, but we abstract away from this aspect for it plays no significant
role in this paper.

The operational semantics is defined by the following rewrite rules for system
configurations.

−
Izcheck(x, y, α) ||Obs(x, y, α) || S → Bzobs(x, y, α) ||Obs(x, y, α) || S [CHK]

Obs(x, y, α) /∈ S

Izcheck(x, y, α) || S → Bzobs(x, y, α) || S [NCHK]

−
Izdrop(x, y, α) || Bzobs(x, y, α) ||Obs(x, y, α) || S → Bz¬Obs(x, y, α) || S [YDRP]

Obs(x, y, α) /∈ S

Izdrop(x, y, α) || Bzobs(x, y, α) || S → Bz¬obs(x, y, α) || S [NDRP]

“Exhibitionists” and “Voyeurs” Do It Better 225

−
Izobs(x, y, α) ||Pow(x, y, α) || S → Bzobs(x, y, α) ||Pow(x, y, α) ||Obs(x, y, α) || S [ASK]

Ixdone(x, α) || S → Ixdone(x, α) || S′

Ixdone(x, α) ||Obs(y, x, α) || S → Ixdone(x, α) ||Obs(y, x, α) || Bydone(x, α) || S′ [OBS1]

Obs(y, x, α) /∈ S

Ixdone(x, α) || S → Bxdone(x, α) || S [OBS2]

−
A || S → A′ || S [AG]

Rule [CHK] says that if agent z intends to check/know if x is observing y’s action
α and this is the case, then such an intention will be turned into a belief. Dually,
rule [NCHK] deals with the case where this is not the case (Obs(x, y, α) does not
occur in the system configuration), so that z will believe that obs(x, y, α) does
not hold.

Rule [YDRP] says that if agent z know that x is observing y’s action α
(which is the case) and wants to stop him, term Obs(x, y, α) is dropped from
the environment and z’s belief is updated correspondingly. By rule [NDRP] we
deal where the similar case, but supposing the agent had a wrong belief (x was
not actually observing y’s actions α), which is dealt with trivially.

Rule [ASK] is about agent z willing that x observes y’s actions α: if this is
allowed (Pow(x, y, α)), x’s beliefs will be updated as well as the environment
state.

Rule [OBS1] and [OBS2] recursively define how the environment broadcasts
information about an action to all the observers. When agent x wants to ex-
ecute α, each observer y (rule [OBS1]) will be recursively added the belief
Bydone(x, α): when none needs to be managed, x intention can simply become
a fact, that is, he will belief the action to be executed.

The final, trivial rule [AG] is used to represent the fact that at any given time
some agent configuration can change autonomously, thus modelling any belief
revision or intention scheduling.

Notice that formulas Bzcoord(x, y, α) or Izcoord(x, y, α) never appear in this
semantics. This is because the fact that an agent coordinates its behaviour with
another is not an aspect influencing/influenced by the environment: it is rather
a mental property characterising the forms of observation-based coordination an
agent participates to thanks to the s-env support.

5 Applications of the Model

The formal model described above serves multiple purposes:

– clearly and rigorously identifying basic primitives / general-purpose mecha-
nisms which can be composed to specify various type of observation-based
coordination patterns;

226 L. Tummolini et al.

– helping the engineering of the approach on top of MAS infrastructures. The
operational semantics provides a rigorous description of the observation fea-
tures we aim at supporting at the infrastructure level. So it is a fundamental
guide for designer and developers of MAS infrastructures which want to
support BIC;

– supporting agent reasoning. By formally defining the observability rules char-
acterising environment configuration, we promote their inspection and for-
mal reasoning by intelligent agents, so as to automate the analysis of the
dynamic behaviour of the MAS: recognising failures, providing suggestions,
and so on.

A formal semantics makes it possible to establish some rigorous properties about
observed events and observation rules of the environment, which necessarily
impact on the reasoning process of observing / observed agents. In other words,
the environment (infrastructure) provides some guarantees which can be taken
as assumptions by agents exploiting the services, so as to alleviate their reasoning
process: for instance, the environment can guarantee agents to observe all the
actions executed by a certain other agent in the right order.

In this section we deepen this issue showing how concepts and applications
related to the s-env notion can be formally addressed by our model.

5.1 Specifying Observation-Based Coordination

The formal framework can be adopted to specify rigorously the forms of coor-
dination devised in Section 2. Given two agents x and y, an action α, and the
system configuration S we introduce the following predicates:

– Unilateral

Uni(x, y, α, S) � Ixcoord(x, y, α) ∈ S ∧ Obs(x, y, α) ∈ S

– Unilateral with Awareness

UniAW (x, y, α, S) � Uni(x, y, α, S) ∧ Byobs(x, y, α) ∈ S

– Bilateral
Bi(x, y, α, S) � Uni(x, y, α, S) ∧ Uni(y, x, α, S)

– Reciprocal

Rec(x, y, α, S) � UniAW (x, y, α, S) ∧ UniAW (y, x, α, S)

– Mutual

Mut(x, y, α, S) � Rec(x, y, α, S) ∧ BxIycoord(y, x, α) ∧ ByIxcoord(x, y, α)

So forms of unilateral coordination are obtained by instrumenting the environ-
ment configuration with the simple rule Pow(x , y , α) and with agent x manifest-
ing the intention Ix(obs(x, y, α)), causing the instrumentation of the environment
with the rule Obs(x, y, α).

“Exhibitionists” and “Voyeurs” Do It Better 227

Bilateral coordination can be obtained by extending previous approach to
include also y observation of x’s actions, instrumenting the environment with
the rules Pow(y, x, α) and Obs(y, x, α), the latter instantiated by the intention
of the agent y Iyobs(y, x, α).

The unilateral and bilateral forms of coordination can be extended then with
forms of awareness, by agents intention Iycheck(x, y, α) enabling y awareness of
the observability of his actions to x – obtaining the unilateral-aw form – and
Ixcheck(y, x, α), enabling also x awareness of the observability of his actions to
y – obtaining the reciprocal form of coordination.

5.2 From Overhearing to Oversensing

As an example scenario possibly enjoying the features of s-envs we consider
overhearing. This has been introduced in MAS as a technique / architecture to
realise forms of collaboration and coordination non-preplanned, typically in un-
structured and unpredictable environments, based on unobstrusive observation
and unsolicited suggestion [21]. Roughly speaking, overhearing consists in one
agent – the overhearer – sniffing messages exchanged by two or more agents. The
overhearer collects the messages and makes them available to suggester agents
through a sort of publish / subscribe service: suggesters subscribe their interest
to be notified by the overhearer when a certain type of event occurs concerning
the communication among observed agents.

Overhearing has been used for supporting group formation in open environ-
ments [22], monitoring the interactive behaviour of organization – in particular
implicit organisation [23], to enable awareness among agents [24], plan and con-
versation dynamic recognition [25].

Overhearing can be suitably implemented on top of the abstract model of
environment described in this paper. In our case the overhearer agent disap-
pears, since its functionalities are directly provided by the s-env environment
(infrastructure), which is responsible to enable interactions (communications)
among agents. The publish / subscribe service among the overhearer agent and
suggester agents is mapped onto the s-env services.

Each suggester agent manifests its intention to overhear certain communi-
cation events concerning the interaction of agents a1, . . . an by formulating the
intentions:

Isobs(s, a1, communication-event)
. . .
Isobs(s, an, communication-event)

Specific examples can be:

Isobs(s, customer, ask(customer, service provider, price(X, Y)))
Isobs(s, service provider, inform(service provider, ,))

Here, all the requests made by the customer agent to a service provider about
some good prices are observed, along with all the information provided by the
service-provider. Actually, our model supports an extension of overhearing to-

228 L. Tummolini et al.

ward oversensing, i.e. applying the principle of overhearing to a general model
of action / interaction, which includes – but is not limited to – communication.

6 Other Examples of BIC Coordination

Mutual coordination is at the basis of BIC, requiring not only observation based
coordination and forms of awareness, but agents awareness of each other inten-
tion to coordinate.

Actually, tacit messages can be exchanged also in different other forms of
coordination. In coordination the most important message conveyed by BIC is
not the fact that I intend to do (and keep my personal or social commitments
– which is crucial in cooperation), or my reasons and motives for acting, or the
fact that I’m able and skilled. It is more relevant communicating (informing)
about when, how, where I’m doing my act/part in the shared environment, so
that you can coordinate with my behaviour while knowing time, location, shape,
etc.

In what follows some examples of coordination with tacit messages are pro-
vided that are inspired mainly from the teamwork literature.

6.1 Information on the Other Members’ Activity: “I Am Ready”

In [7] a trade off in the amount of information team members must maintain
on each other intentions is discussed, particularly when a step involves only an
individual or a sub-team. This intention tracking does not need a complete plan
recognition but simply that the individual or the sub-team intend to execute
that step. Consider as an example a sort of teamwork which is to drive an
underground train. A coordination problem for the driver is to close the doors
when all passengers are on board and this can be difficult when a station is
overloaded. The driver is able to observe using a mirror the passengers rush in
taking his train. Passengers usually don’t know to be observed and they are not
communicating their intentions. However usually before leaving a station the
drivers make a first attempt to close the door which, although it is a practical
action, is mainly used as a message like “The train is leaving”. The driver does
not intend to really close the door. However whether passengers understand the
message or simply infer the driver’s intention to leave, they often go off the train
and let the train leave safely the station. This is a case of bilateral coordination
where only the drivers’ actions can be considered as messages.

6.2 Joint Persistent Goals Achievement: “I Have Done It”

Joint intention theory [7, 26, 27] has been proposed as a framework for multi-
agent coordination in a team. The team members are required to jointly commit
to a joint persistent goal G. It also requires that when any team member acquires
the belief that G has been achieved or turns out to be unachievable or irrelevant,
a mutual belief about this event should be attained. Because of the domain is

“Exhibitionists” and “Voyeurs” Do It Better 229

usually of partial observability, the team member is commonly designed to sig-
nal this fact to the other agent through explicit communication. However, in real
world domains, explicit communication has a cost and sometimes the expected
cost of mis-coordination can outweigh it [28]. Behavioural implicit communica-
tion can be adopted in such cases even if it is possibly ambiguous because it can
turn out to be good enough and better of not communicating at all. Drawing on
[28] consider such scenario. Two helicopters with different abilities have a joint
goal of reaching together a final destination but encounter a dangerous radar
unit. Only one of them is capable of destroying the radar and should decide to
communicate a message like “I destroyed the radar” to the other. However send-
ing these message could be too expensive and risky (i.e. by being intercepted). If
the destroyer believes that the other helicopter is following him and is observing
him, by simply keeping on track to destination he can assume that the other
will receive his silent message anyway and will keep the commitment to reach
the final destination. This is a case of mutual coordination with tacit messages
because also the follower’s action of keeping the track can be considered as a
message.

7 Conclusion

In this paper we have proposed a model of a shared environment for observa-
tion based coordination which can enable behavioural implicit communication
between the agents. The BIC approach and the related shared environment sup-
porting framework can be suitably implemented in infrastructures supporting
the MAS. In particular governing infrastructures – i.e. infrastructures providing
abstractions and services also for governing / constraining agent interaction [6]
– can be suitably adopted for the purpose, representing the s-env as a first class
issue.

The requirement for a MAS infrastructure in order to support the
observation-based coordination are:

– It must provide explicit abstractions storing, managing and enacting pow
and obs rules, as the set of rules defining respectively the observability level
of the environment and the set of rules defining actually what observations
are taking place;

– It must have access to the motivational state of the agents, in order to
dynamically check for agent intentions, causing epistemic actions and then
the updating of the obs rules of the environment;

– It must have access to the epistemic state of the agents, in order to dy-
namically update it according the action execution events and the obs rules
dynamically characterising the shared environment.

The concept of observation artifact is strictly related to the coordination artifact
abstraction [10], which represents first class runtime entities provided to agents
to support their coordination. TuCSoN is a coordination infrastructure for MAS

230 L. Tummolini et al.

supporting the coordination artifact abstraction [11]: accordingly suitable infras-
tructure can be devised to support effectively observation artifacts, as runtime
entities enhancing the observation capabilities of agents.

Acknowledgements

The authors are grateful to the anonymous reviewers, whose work, constructive
remarks and criticisms have greatly helped improving the quality of this paper.

This research is under the auspices of: MIUR (the Italian Ministry of Edu-
cation, University and Research), COFIN 2003 project “Fiducia e diritto nella
società dell’informazione”, paper no. 3; and EC (the European Community),
FP6 project “AgentLink III”.

References

1. Castelfranchi, C.: When doing is saying – the theory
of behavioral implicit communication. Draft. Available at
http://www.istc.cnr.it/doc/62a 716p WhenDoingIsSaying.rtf (2003)

2. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: the co-
ordination viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents VI
— Agent Theories, Architectures, and Languages. Volume 1767 of LNAI., Springer-
Verlag (2000) 250–259

3. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5:2
(1999) 97–117

4. Beckers, R., Holland, O., Deneubourg, J.L.: From local actions to global tasks:
Stigmergy in collective robotics. In Brooks, R.A., Maes, P., eds.: Artificial Life IV.
MIT Press (1994)

5. Schumacher, M.: Objective Coordination in Multi-Agent System Engineering –
Design and Implementation. Volume 2039 of LNAI. Springer-Verlag (2001)

6. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engi-
neering of agent systems. In Klusch, M., Bergamaschi, S., Edwards, P., Petta, P.,
eds.: Intelligent Information Agents: An AgentLink Perspective. Volume 2586 of
LNAI: State-of-the-Art Survey. Springer-Verlag (2003) 179–202

7. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86 (1996) 269–357

8. Rao, A.S.: A unified view of plans as recipes. In Hölmstrom-Hintikka, G., Tuomela,
R., eds.: Contemporary Action Theory. Volume 2: Social Action. Kluwer Academic
Publishers (1997)

9. Huber, M., Durfee, E.: Deciding when to commit to action during observation based
coordination. In: 1st International Conference on Multi-Agent Systems (ICMAS-
95), Menlo Park, CA, USA, AAAI Press (1995) 163–170 Proceedings.

10. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment based coordination for intelligent agents. In: Autonomous
Agents and Multi-Agent Systems. (2004) 3rd International Joint Conference (AA-
MAS 2004), New York, July 2004.

11. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2:3 (1999) 251–269 Special Issue:
Coordination Mechanisms for Web Agents.

“Exhibitionists” and “Voyeurs” Do It Better 231

12. Noriega, P., Sierra, C.: Electronic institutions: Future trends and challenges. In
Klusch, M., Ossowski, S., Shehory, O., eds.: Cooperative Information Agents VI.
LNAI. Springer-Verlag (2002) 14–17

13. Watzlavich, P., Beavin, J., Jackson, D.: Pragmatics of human communication: a
study of interactional patterns, pathologies, and paradoxes. W.W. Norton &Co.,
Inc., New York (1967)

14. Omicini, A., Ricci, A., Viroli, M., Rimassa, G.: Integrating objective & subjec-
tive coordination in multiagent systems. In: 19th ACM Symposium on Applied
Computing (SAC 2004), Nicosia, Cyprus, ACM (2004) 449–455 Special Track on
Coordination Models, Languages and Applications.

15. Keil, D., Goldin, D.: Modeling indirect interaction in open computational systems.
In: IEEE 12th International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET ICE 2003), 1st International Workshop “The-
ory and Practice of Open Computational Systems” (TAPOCS 2003), Linz, Austria,
IEEE CS (2003) Proceedings.

16. Helbing, D., Keltsch, J., Molnar, P.: Modelling the evolution of human trail sys-
tems. Nature 388() (1997) 47–50

17. Parunak, H.V.D., Breuckner, S., Sauter, J., Odell, J.: A preliminary taxonomy of
multi-agent interaction. In Giorgini, P., Müller, J., Odell, J., eds.: Agent-Oriented
Software Engineering IV. LNCS. Springer-Verlag (2004) 4th International Work-
shop (AOSE 2003), Post-Proceedings.

18. FIPA: FIPA Communicative Act Library Specification. (2000)
http://www.fipa.org.

19. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence 103
(1998) 157–182

20. Castelfranchi, C., Lorini, E.: Cognitive anatomy and functions of expectations. In:
Cognitive Modeling of Agents and Multi-Agent Interactions. (2003) Workshop at
IJCAI. Proceedings.

21. Aiello, M., Busetta, P., Dona’, A., Serafini, L.: Ontological overhearing. In: Intel-
ligent Agents VIII. Volume 2333 of LNAI. Springer-Verlag Berlin (2002) 175–189

22. Legras, F., Tessier, C.: Lotto: Group formation by overhearing in large teams. In
Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), New
York, USA, ACM (2004)

23. Rossi, S., Busetta, P.: Towards monitoring of group interactions and social roles via
overhearing. In: CIA 2004. Volume 3191 of LNAI. Springer-Verlag Berlin (2004)
47–61

24. Novik, D., Ward, K.: Mutual beliefs of multiple conversants: a computational
model of collaboration in air traffic control. In: AAAI-93, Washington, DC, USA
(1993) 196–201

25. Gutnik, G., Kaminka, G.: Toward a formal approach to overhearing: algorithm for
conversation identification. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe,
M., eds.: 3rd international Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), New York, USA, ACM (2004)

26. Cohen, P., Levesque, H.: Teamwork. Technical report, SRI-International, Menlo
Park, CA, USA (1991)

27. Jenning, N.R.: Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75:2 (1995) 195–240

28. Pynadath, D., Tambe, M.: The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research (2002)

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 232 – 245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Swarming Distributed
Pattern Detection and Classification

Sven A. Brueckner and H. Van Dyke Parunak

Altarum, 3520 Green Court, Suite 300, Ann Arbor, MI 48105-1579
1.734.302-{4683, 4684}

{sven.brueckner, van.parunak}@altarum.org

Abstract. Swarming agents in networks of physically distributed processing
nodes may be used for data acquisition, data fusion, and control applications.
We present an architecture for active surveillance systems in which simple mo-
bile agents collectively process real-time data from heterogeneous sources at or
near the origin of the data. We motivate the system requirements with the needs
of a surveillance system for the early detection of large-scale bioterrorist attacks
on a civilian population, but the same architecture is applicable to a wide range
of other domains.The pattern detection and classification processes executed by
the proposed system emerge from the coordinated activities of agents of two
populations in a shared computational environment. Detector agents draw each
other’s attention to significant spatio-temporal patterns in the observed data
stream. Classifier agents rank the detected patterns according to their respective
criterion. The resulting system-level behavior is adaptive, robust, and scalable.

1 Introduction

Fine-grained agents swarming in a large-scale physically distributed network of proc-
essing nodes may be designed to perform three major tasks. They may use local sen-
sors to acquire data and guide its transmission, they may fuse, interpolate, and inter-
pret data from heterogeneous sources, and they may take or influence command and
control decisions.

In previous projects, we developed swarm intelligent agent systems for command
and control [11] [4] and for data acquisition and transmission [6]. This paper presents
a swarming agent architecture for distributed pattern-detection and classification.

Driven by the need for more efficiency and agility in business and public transac-
tions, more and more data becomes digitally available in real time in increasingly
finer-grained global computer networks. These heterogeneous data streams reflect
many aspects of the behavior of individuals or small groups in a population (e.g., traf-
fic flow, shopping and leisure activities, healthcare needs). A new generation of active
surveillance systems that integrate a large number of spatially distributed heterogene-
ous data streams may be used in various applications, for instance, to protect a civil-
ian population from bioterrorist attacks, to support real-time traffic coordination sys-
tems, to monitor the physiological state of outpatients, or to manage public access to
sensitive natural resources efficiently.

Swarming Distributed Pattern Detection and Classification 233

Active surveillance of population-level activities includes the detection and classi-
fication of spatio-temporal patterns across a large number of real-time data streams.
Approaches that analyze data in a central computing facility tend to be overwhelmed
with the amount of data that needs to be transferred and processed in a timely fashion,
especially in networks with restricted bandwidth and processing capabilities. Also,
centralized processing raises proprietary and privacy concerns that may make many
data sources inaccessible. Our proposed pattern detection and classification architec-
ture avoids these problems through consequent decentralization. Instead of transfer-
ring the data to a centralized processing facility, we transfer the processes (fine-
grained agents) to the data sources. As a consequence, significantly less data needs to
be transferred over long distances and access restrictions may be guaranteed through
proven local processes.

We apply swarm intelligence techniques (for introductions see [9] or [2]) to glob-
ally coordinate our local data processing. The swarm intelligence design approach
adapts robust, self-organizing coordination mechanisms observed in distributed natu-
ral systems (e.g., social insect colonies) to engineered systems. One of the most pow-
erful global coordination mechanisms in distributed biological systems is stigmergy
[7], from the Greek words stigma “sign” and ergos “work”. The work performed by
the agents in the environment in turn guides their later actions – a feedback loop that
establishes dynamic information flows across the population and guides its operation.

The remainder of this paper is structured as follows. In Section 2 we introduce one
specific active surveillance problem. The following major Section 3 specifies our
proposed architecture and its operation in detail. Section 4 presents a software demon-
stration that illustrates the proposed mechanisms. We conclude in Section 5.

2 The Biosurveillance Problem

In the event of a large-scale bioterrorist attack on a civilian population, triggering the
emergency response system even at the first positive diagnosis of a disease caused by
a CDC-class A bioterrorist pathogen (e.g., airborne anthrax) is still too late to prevent
thousands of deaths, a breakdown of the public health system, and civil disorder. Such
a disaster can only be prevented when the emerging epidemic is caught while the
symptoms of the infected people are still unspecific and very similar to common dis-
eases (e.g., influenza).

New sensor and information technology may be used to detect an attack from the
subtle changes in population behavior that usually precede the first medical diagnosis
by a significant amount of time. Behavioral patterns in the community are likely to
change as people fall ill. This change is reflected in many different population activity
indicators (e.g., school absenteeism, traffic patterns) that are increasingly accessible
in real-time. A system that surveys multiple data points in real-time may be more suc-
cessful in triggering an alert than any single data source.

The detection and classification of subtle changes in population activity requires
the integration of a wide variety of non-specific real-time data sources into the opera-
tion of the surveillance system. The providers of the data are often very sensitive to
proprietary and privacy concerns. For instance, local sales figures of various over-the-
counter remedies at individual pharmacies are an invaluable contribution to biosur-

234 S.A. Brueckner and H.V.D. Parunak

veillance, but the owner of the data (the merchant) must be assured that this data does
not reach its competitors. Also important is data from the public healthcare system,
such as the number of patients inquiring about certain symptoms at their physician.
But the surveillance system is only permitted to work with anonymized data.

The use of non-specific data sources for the early detection of an epidemic in a
population requires the integration of many population activity indicators to achieve
the required sensitivity and specificity. Furthermore, to guarantee the early detection
of an outbreak, the system must operate on real-time data that is updated at least sev-
eral times a day. As a result, there is an immense amount of data that needs to be
processed in a timely fashion.

A biosurveillance system must be robust against cyber attacks and component fail-
ures, cheap and unobtrusive in its day-to-day operation, intuitive in its reporting, and
designed for low-cost adaptivity and scalability along various dimensions, such as for
instance:

 spread and complexity of population patterns,
 types and locations of data sources,
 detected symptoms and diseases, or
 detected attack patterns

3 Architecture and Operation

We consider a distributed swarming agent architecture the most appropriate answer to
the challenge of detecting spatio-temporal patterns in a network of heterogeneous
sources of potentially proprietary real-time data. Instead of attempting to stream a
tremendous amount of data into a central processing facility, we propose to integrate
the external sources into a network for mobile agent computing. Essentially, this net-
work of agent processing nodes is a massively parallel computer for pattern detection
and classification with a unique way of self-organizing the processing tasks.

Into our network of processing nodes we deploy large populations of extremely
simple mobile agents (small footprint) that coordinate their activities in stigmergetic
interactions. Using artificial pheromones – spatio-temporally localized numerical
variables – the agents dynamically organize themselves around patterns observed in
the data streams.

The emergence of globally coordinated behavior through stigmergetic interactions
among many fine-grained software agents in a shared computational environment is
facilitated by an application-independent component of the distributed runtime envi-
ronment that emulates actual pheromone dynamics (aggregation, evaporation, disper-
sion) in the physical world. The operation of this component – we call it the phero-
mone infrastructure – is described in detail in the following section.

Our heterogeneous agent system continuously executes two parallel processes: pat-
tern detection and pattern classification. More populations of agents could be de-
ployed at any time, for instance to introduce additional criteria in the detection proc-
ess, or to add more classification schemes.

The agents executing the detection process (“Detectors”) continuously process the
input data and search for spatio-temporal structures. Detectors use pheromones of one
set of flavors to focus their search dynamically on suspicious areas of the network,

Swarming Distributed Pattern Detection and Classification 235

while a second set is used to communicate the result of the detection process. In the
software demonstration that we present in Section 4, Detectors search for unusually
high differences in the data streams of neighboring locations in the network.

“Classifier” agents are responsible for the classification of the detected patterns ac-
cording to a specified scheme. If multiple schemes are applied in parallel, then there
are Classifiers of as many sub-populations as there are schemes and each sub-
population uses a different pheromone flavor to communicate its results. The pattern
classification scheme used in our demonstration correlates the detected patterns with a
particular, dynamically changing geographic direction (wind). Patterns that show a
strong alignment with the chosen direction are highlighted by the Classifiers.

In the following sections we first review the operation of the pheromone infrastruc-
ture. Then we present the agents of the detection and classification processes in detail.

3.1 Support for Stigmergy

Our agents coordinate their activity and communicate their results through markers in
a shared dynamic environment. These stigmergetic interactions give rise to a robust
self-organizing system-level behavior that rests on the feedback between the dynam-
ics of the individual agents and the processes that manipulate information in the
agents’ environment (Figure 1).

Marker-based stigmergy in social insect colonies uses chemical markers (phero-
mones) that the insects deposit on the ground in specific situations (e.g., food found).
Multiple deposits at the same location aggregate in strength. Members of the colony
who sense pheromones of a particular flavor may change their behavior (e.g., follow
pheromone trail to food source). Pheromone concentrations in the environment dis-
perse in space and evaporate over time, because pheromones are highly volatile sub-
stances.

[4] specifies and analyzes an application-independent component for distributed
agent runtime environments that emulates the dynamics of pheromone aggregation,
dispersion, and evaporation for fine-grained software agents. The pheromone infra-
structure represents concentrations of pheromones as scalar values assigned to a par-
ticular location in a discrete space. Different pheromone flavors are distinguished
through values of additional tags attached to a
pheromone. A tag is a particular attribute that
may carry a value from a given domain. For
instance, all pheromones in the application
described here share a tag for a discretized
time value.

The spatial structure of the pheromone in-
frastructure is captured in a network of places.
A place is a location where agents may de-
posit or sense pheromones and where the in-
frastructure manipulates local concentrations.
We use places to represent the structure of the
problem space in which the agents coordinate
their activities. This space may be the physi-
cal space (e.g., city blocks), temporal space

internal
state

state of local
environment

dynamics of
environment

actions
behavior/
program

internal
state

state of local
environment

dynamics of
environment

actions
behavior/
program

actions
behavior/
program

Fig. 1. Stigmergy links environmental
dynamics with agent processes

236 S.A. Brueckner and H.V.D. Parunak

(e.g., a machine schedule), or even some abstract graph (e.g., role graph in a template
for a robotic team that executes a specific mission).

Each deposit of a pheromone at a particular place specifies a number of tags and a
numerical concentration value. The strengths of all deposits at the place that specify
the same tags are added together. The pheromone’s propagation factor specifies the
proportion of the deposit that is passed to neighboring places. A factor of zero pre-
vents all propagation. The evaporation factor specifies the rate of reduction of the
pheromone concentration at a place over time.

Previously, we applied the pheromone infrastructure to manufacturing control [4]
and combat coordination [11]. In the proposed biosurveillance application, which we
use in this paper as an example for our distributed pattern detection and classification
approach, we represent the spatial and social structure of the protected population in
our network of places. A place “covers” a unique segment of the region in which the
system is deployed and neighborhood relations among places reflect physical
neighborliness (adjacency of segments) as well as social connectedness (population
movement and interaction patterns) of these segments (Figure 2).

The spatial structure of the pheromone dynamics immediately carries over into the
structure of the agent processing network as well as into the spatial structure of agent
activities itself. A Place agent provides the services of a place in the pheromone infra-
structure and the agent is executed at a processing node that is preferably located in-
side the geographic segment covered by the place. The agent provides the swarming
agents of the actual application with access to the local data sources in the segment, it
implements the local pheromone dynamics, it provides topological information, and it
manages the local agent directory for dynamic interactions among agents currently
resident on the place.

Access to Data Sources.—In our architecture we process real-time data streams from
heterogeneous and spatially distributed sources without transferring the data to a cen-
tralized computing resource. Rather, we use mobile agents to process the data near its
respective source in a network of processing nodes. A Place agent occupies the proc-
essing node and provides the application agents
with a unified interface (XML-based) to the data
streams that are located in the segment covered
by the place. This localization of the access di-
rectly addresses privacy and proprietary con-
cerns that arise when commercial or protected
data is used in the application. Such data is es-
sential in the biosurveillance application, since
most of the available population activity indica-
tors are either commercial (e.g., pharmacy sales,
work absenteeism) or healthcare related (e.g.,
calls to physician).

The Place agent continuously gathers the data
from its local sources and stores it at the proc-
essing node to provide fast access by the agents.
The data samples are tagged with the time the
sample was taken and data above a certain age

Fig. 2. Places may represent seg-
ments of the region and are con-
nected in spatial and social relations

Swarming Distributed Pattern Detection and Classification 237

(the data availability horizon) is deleted by the Place agent. Thus, the application
agents may operate on a set of value profiles (samples over time), one for each indi-
vidual local source.

Pheromone Services.—Providing interaction protocols that allow the application
agents to deposit pheromones and sense local concentrations, and executing the dy-
namics of pheromone aggregation, dispersion, and evaporation are the main tasks of a
Place agent. The details of this important service and the emergent characteristics of
the pheromone dynamics are specified and formally analyzed in [4].

Topological Information.—The agents of the application move dynamically through
the network of processing nodes. To ensure the scalability of our architecture and to
provide robustness to node failures and topology changes, no global map of the place
network is provided. Instead, application agents request local topology information
from their local Place agent at the time of their move. In return they receive a list of
direct neighbors of the place (spatial and social neighborhood) and they are only per-
mitted to move to these locations.

Directory Services.—The dynamical nature of our agent architecture does not permit
fixed interaction structures. Rather, agents choose their interaction partners dynami-
cally, depending on their current situation (e.g., agent location, local pheromone con-
centrations, internal agent state). The Place agents act as facilitators by providing the
application agents with local directory information concerning other application
agents on the same place. Consequentially, all agent interactions are localized, which
focuses the system’s attention and reduces the need for communication bandwidth, a
feature that will be crucial in real-world applications (see for instance [1]).

3.2 Pattern Detection Process

Our Detector agents face the problem of finding global patterns across spatially-
distributed heterogeneous real-time data sources while they are only able to process
data locally. Thus, it is actually the population of Detectors that identifies a pattern,
not the agents themselves. Also, the Detectors have to calibrate their joint sensitivity
dynamically, since the same local values may be considered part of a clear pattern at
one time and barely distinguishable at another depending on the overall data stream.

These two population tasks break down to two questions for the individual agent:
a) where to focus the search; and b) what to declare part of a pattern. The first ques-
tion addresses the dynamically changing spatial and temporal focus of an agent. De-
tector agents are able to move from place to place and they can shift their focus at dif-
ferent periods in the local data streams (Figure 3). Thus, an agent needs guidance for
its spatial and temporal moves.

The second question addresses the problem of normalization across space and time.
If the agents were able to access all the data streams at once, they could easily deter-
mine the maximum value and normalize all the data. Then, a threshold would separate
background locations from components of a pattern. Without the global access to
data, Detector agents have to find other means to determine that threshold.

Given the decentralized nature of the agent environment and the scale of the Detec-
tor population – in the hundreds or even thousands depending on the size of the sys-
tem – both questions have to be answered collectively. We establish two coordination

238 S.A. Brueckner and H.V.D. Parunak

processes among the De-
tector agents, one based
on pheromones in the
shared environment to
guide the agents’ move-
ment, the other one based
on repeated direct inter-
actions (face-offs) among
the agents to establish the
current global maximum.

3.2.1 Guiding the Focus
A Detector tries to align
its focus with the location
of a pattern in the hetero-
geneous data stream. A
location designates not
only a region in space,
but also a point in time in
the recent past, since the
data in the stream chan-
ges over time. The spatial
focus of the agent is simply its current place in the pheromone infrastructure, while its
temporal focus is set in an internal variable. Thus, the agent moves its focus either by
moving to a neighboring place, or by incrementing or decrementing its internal vari-
able. Movements are restricted to the region covered by the pheromone infrastructure
and by the horizon, beyond which data is no longer stored at the places. As real time
advances, an agent’s temporal focus may become invalid (outside the horizon), in
which case the agent’s focus is automatically moved to remain at the horizon.

With every movement of its focus, a Detector agent assesses the evidence that the
data of the local real-time sources in its spatio-temporal focus is part of a pattern. The
definition of a pattern depends on the particular application of the detection mecha-
nism. For instance, in the software demonstration that we present in Section 4, the De-
tectors search for locations where the data shows a strong spatial gradient. Other ap-
plications, for instance biosurveillance, may search for spatio-temporal locations
where the observed data significantly deviates from an established normal baseline.

The Detectors collectively coordinate their search, using pheromones to guide their
individual movements. This stigmergic coordination mechanism balances two con-
flicting trends: Detectors are attracted to locations which other Detectors identified as
part of a potential pattern, but Detectors are at the same time repelled by large con-
centrations of other Detectors. The attractive force recruits agents to potential patterns
to reinforce the finding of other agents. The repulsive force limits the recruitment to
prevent the system from being locked into only one solution. In recruitment mecha-
nisms in nature such a limit is “built in” automatically by spatial limitations, since two
physical entities cannot occupy the same space at the same time.

Agents dynamically create the attractive and repulsive forces through individual
context-dependent pheromone deposits. The “Search” pheromone (PS) has two major

pa
st

da
ta

po
int

s

place

agent
focus

neighbor
relation

data
availability
horizon

Fig. 3. The Spatio-temporal focus of an agent moves through
the “space” covered by the system

Swarming Distributed Pattern Detection and Classification 239

flavors; PS(A) concentrations are considered at-
tractive, while PS(R) concentrations repel
agents from a spatio-temporal location. The
place at which a PS pheromone concentration is
sampled determines the spatial component of
the location to which the pheromone refers. The
temporal component is expressed with an addi-
tional tag attached to each PS pheromone, speci-
fying a point in time in the past. Deposits of
pheromones with different tags are not aggre-
gated into one concentration by the infrastruc-
ture. Thus the collection of all PS pheromones
at the same place with the same major flavor may be interpreted as a force profile
over time (Figure 4).

Regularly repeated deposits of a pheromone at a fixed spatio-temporal location
quickly take the local pheromone concentration to an analytically predictable fixed
point, which depends on the deposit rate and the evaporation and propagation factor
of the particular pheromone flavor [4]. These deposits may be generated by the same
or by different agents and any agent that knows the configuration of the pheromone is
able to estimate the deposit rate from the sampled concentration, assuming that the
fixed point has been reached when the sample is taken.

A Detector regularly, at a globally fixed rate, deposits one unit of the PS(R) phero-
mone at its current place. The pheromone is tagged with the current value of the in-
ternal variable that determines the agent’s temporal focus. Thus all deposits from
agents with the same focus aggregate into one local pheromone concentration. The
fixed point reached by this concentration directly reflects the number of agents that
share the same focus.

Deposits to the PS(A) pheromone are only generated regularly by a Detector if the
agent is convinced that it is currently focused on a part of a pattern. Once the evidence
computed by the agent has passed a certain threshold (see next Section), the agent
starts depositing one unit of the attractive pheromone at regular intervals. Thus, the
local PS(A) pheromone concentration relates directly to the “belief” of the Detector
population that this location is part of a distinguishable pattern.

Both flavors of the PS pheromone propagate in space and time. A deposit of the
pheromone with a particular temporal focus tag at a specific place immediately trig-
gers weaker deposits at neighboring places and nearby points in time. This propaga-
tion mechanism, implemented in the Place agents, is a straight-forward temporal ex-
tension of the spatial propagation mechanism. It creates a smooth distributed force
field over the represented space and time for each major flavor of the PS pheromone.

A Detector agent regularly executes a movement decision cycle. Each cycle begins
with the agent’s sampling the PS(A) and PS(R) concentrations at and nearby its current
focus. The agent may choose to move only in space (neighboring place), only in time
(increment/decrement temporal focus variable), or in both space and time; and for every
potential new location of its focus, the agent samples the pheromone concentrations.

In its movement decision the agent combines the two opposing forces. For each po-
tential new location it computes the relative attractive force and the relative repulsive
force by normalizing the sampled PS(A) and PS(R) concentration for each option.

PS(R)

Fig. 4. The local pheromone concen-
trations translate into a force profile
over time

240 S.A. Brueckner and H.V.D. Parunak

Then it subtracts the repulsive force from the attractive force and normalizes the re-
sulting values to add up to one. Now each of these normalized values represents the
probability that the agent selects the particular location and the agent spins an appro-
priately weighted roulette wheel to make its choice. We present the advantages of
combining multiple pheromone fields in the decision process in [5].

If the agent’s choice includes a spatial movement, it executes its mobility protocol,
which transfers the agent from one processing node to the next and which also
changes the registration of the agent with a place. The temporal component of a move
only requires the agent to change its internal variable.

The probabilistic movement of the Detector agents’ focus guided by the dynami-
cally changing force fields does not cover the whole search space evenly, but rather
concentrates the agents near detected patterns. To ensure that the system as a whole
remains adaptive to newly emerging patterns and also to provide sufficient ergodicity
for the threshold adaptation process, we restrict the lifespan of an agent to a fixed
number of movements. At the same time, each Place agent introduces new agents at a
fixed rate, dynamically balancing the global population size and ensuring a minimum
number of visits at each place.

3.2.2 Adapting the Threshold
The significance that a Detector agent assigns to the evidence presented in the data it
currently observes depends on the overall situation in the system and thus requires
global information. The current threshold above which the agent starts depositing at-
tractive pheromones represents an estimate of the global background level, and must
be collectively established across the Detector population.

We use a variant of Particle Swarm Optimization (PSO) [8], inspired by flocking,
herding, and schooling behavior in animal populations, to adjust the threshold. Bird
flocks coordinate their movement as individual birds align their heading and velocity
with that of their nearby neighbors and move in the direction of the center of the flock
[12]. In PSO, the task of a swarm of agents is to search some space. Agents are distrib-
uted over the space, and periodically compare their estimates of the function being
searched with other nearby agents, adjusting their own best information on the basis of
that of their neighbors. Most PSO implementations house all the agents on a single proc-
essor, and “nearby” is typically defined in terms of the data structure housing the agents.

We adapt this model to coordinate the deposit threshold across the Detector popu-
lation. A Detector agent starts depositing PS(A) pheromones when the locally ob-
served evidence passes a globally fixed percentage threshold of the maximum evi-
dence presented anywhere in the system at that moment. To estimate this global
maximum value across the agent population, agents individually keep a short term
memory of their local observations and at regular intervals compare their estimate of
the maximum with other randomly encountered agents. Because our agents are dis-
tributed over a network, their PSO interactions are defined by collocation in the net-
work of place agents.

A Detector agent keeps a memory of the observed evidence during a fixed number
of last steps and carries an estimate of the current global maximum evidence in the
system. If, at any time the agent observes an evidence value larger than its current
maximum estimate, it updates its estimate. At regular intervals, an agent randomly se-
lects one of the other Detector agents that currently share the same place (“random

Swarming Distributed Pattern Detection and Classification 241

encounter”) and initiates a face-off interaction. In this interaction, the agents exchange
and then modify their estimates to reflect the observations of the respective other.

A simple set of rules guides the exchange. Let ma be the maximum of the observed
values of agent a and let Ma denote the agents current estimate of the global maximum
(mb and Mb denote the same values for agent b). After the exchange Ma and Mb are set
to the same value computed as

(max[ma,Mb]+max[mb,Ma]+max[ma,mb])/3 . (1)

Thus, both agents adopt the mean of their estimates tempered by the actual obser-
vations of the respective interaction partner.

The random face-offs among the agents and the fact that their movements cover the
whole search space ensure that the individual estimates eventually approximate the
global maximum. Changes in the actual maximum value are soon detected and com-
municated among the Detector agents.

3.2.3 Communicating the Result
Deposits of the PS(A) pheromone indicate the presence of a potential pattern in the
observed data streams. The purpose of this pheromone is to attract other Detector
agents to this location, so it must be propagated to neighboring locations that may not
be part of the pattern.

In addition to the “Search” pheromone (PS) we introduce a “Find” pheromone (PF)
that allows the Detector population to clearly mark a detected pattern. Deposits of PF
pheromones, unlike those of PS pheromones, are not propagated by the infrastructure
(zero propagation factor). Also, the PF pheromone evaporates much more slowly than
the PS pheromone, and thus it takes longer for the local concentrations to approximate
the fixed point under repeated deposits.

Whenever a Detector agent deposits a PS(A) pheromone, it also deposits a PF
pheromone with the same temporal focus tag. Thus, at locations where the agents per-
ceive sufficient evidence for the presence of a pattern, there will be a buildup of PF
concentrations. The slower evaporation of the pheromone ensures that only if there is
sustained evidence of a pattern will the PF pheromone concentrations reach a signifi-
cant strength.

The global pattern of PF pheromone concentrations is the output of the pattern de-
tection process. This pattern may be visualized for human operators and it also serves
as input for the pattern classification process, described in the next section.

3.3 Pattern Classification

The pattern classification process seeks to highlight those of the detected patterns that
express a particular spatial or temporal characteristic. For instance, in our demonstra-
tion we highlight only those patterns that extend in a particular spatial direction. Other
classification schemes might, for instance, highlight patterns that join places with a
particular characteristic or that extend across specific types of neighborhood relations
among places.

Each applied classification scheme requires a population of Classifier agents that
probabilistically move their individual focus across the spatio-temporal locations rep-
resented in the infrastructure according to the hypothesized pattern. Any Classifier,

242 S.A. Brueckner and H.V.D. Parunak

regardless of its association with a particular scheme, samples local PF pheromone loca-
tions which identify the patterns to the classification process. The chosen classification
scheme is encoded into the agent’s movement and pheromone deposit decision logic.

In general, Classifiers tend to linger at locations that belong to a pattern with a high
ranking in the classification scheme and they also tend to deposit more pheromones
there. All Classifiers deposit “Class” pheromones (PC) to communicate their findings.
Each scheme is associated with a different flavor of the PC pheromone.

The global pattern of PC pheromone concentrations is the output of the pattern clas-
sification process. Again, this pattern may be presented to human operators and it may
also serve as input to additional processes, which, for instance, may cross-correlate
various classifications. At this point, we do not yet present any such potential extensions.

4 Demonstration

To demonstrate the potential of distributed pattern detection and classification in the
domain of biosurveillance, we implemented a simple scenario. The demonstration
also serves as a verification of the main proposed coordination algorithms.

In our demonstration we tile an abstract region with 75 by 75 rectangular places.
Each place has eight neighbors – the places touching its edges and corners. We do not
represent additional social relationships between places since we do not model an ac-
tual population.

We restrict ourselves to homogenous, static, and normalized data sources. We inte-
grate three types of data sources into the system, of which at each place there exists
one input stream. We assume that each data source at each place only delivers a fixed
value between zero and one. In our visualization of the demonstration, we interpret
each source as a component of a color value (RGB). For example, Red might repre-
sent over-the-counter tissue sales, Green antihistamine sales, and Blue workplace ab-
senteeism. Thus, each place has a background color that represents its local input data.

Our Detector agents search for places whose local data is significantly different
than the data in its neighborhood (e.g., higher sales of a certain class of over-the-
counter remedies). Thus, at each step from one place to the next an agent measures
the difference in the observed data and it assigns high evidence to a large differential.

Figure 5 shows the input pattern that our fixed data sources present to the agents.
Besides random background data, there is a horizontal, a vertical, and a diagonal pat-
tern of high differential values. Such a global picture is only available to human ex-
perimenter. The agents are restricted to the local input data at their respective current
place and also users of most deployed systems are not likely to be able to see the
whole pattern, since it may be impossible to transfer all the data in time.

The pattern detection process presented in Section 3.2 has two major components.
The Detector agents coordinate their movements to focus on potential patterns and
they exchange information in random encounters to estimate the global maximum in
the presented evidence. In our demonstration we only use static and normalized data
sources and thus we did not implement the estimation mechanism. We only focus on
spatial patterns, not temporal ones.

Swarming Distributed Pattern Detection and Classification 243

Figure 6 shows a snapshot of the local con-
centrations of the PS(A) pheromone, which the
Detectors use to attract each other to potential
patterns. The lighter the color of a place, the
higher is its local pheromone concentration. We
populated our 75 by 75 places infrastructure
with 1000 Detectors, each of which is permitted
to take 400 steps before it is replaced by a new
agent at a random location.

The non-propagating and only slowly evapo-
rating PF pheromone indicates where the Detec-
tor population believes the current patterns are.
The pattern is now reduced to a few pheromone
concentrations, which easily can be shipped to
the user for review. Also, each local concentration is effectively normalized since it is
created under a global perspective provided by the movement of agents across the re-
gion. Figure 7 shows a snapshot of the PF pattern as the local concentrations have sta-
bilized. In our simulations, the agents quickly converged on the presented pattern and
established a stable PF concentration field.

We implemented one pattern classification
scheme in our demonstration. Assuming that a
detected pattern may relate to an epidemic out-
break of a disease caused by an airborne bioter-
rorist pathogen, our Classifier agents highlight
those patterns that are aligned with the direction
of the wind.

We deploy 1000 Classifiers, which have a
strong tendency (weighted probabilities) to move
in a given direction across the infrastructure. The
agents deposit a non-propagating, slowly evapo-
rating PC pheromone. Thus, high stable concen-
trations of this pheromone indicate patterns that
are aligned with the direction of the wind.

An agent-internal confidence level determines the probability that a Classifier de-
posits a PC pheromone. The agent’s confidence grows if in successive steps it sees
high PF concentrations and it decreases as it
passes through a sequence of low concentra-
tions. So, as an agent moves along a detected pat-
tern, it becomes increasingly likely that this pat-
tern is aligned with direction given to the agent
population.

The agent’s confidence level also influences
its movement decision. With a low confidence,
the agent rapidly proceeds to its given direction.
But, as the agent’s confidence grows, so does its
probability to take a step in the opposite dirtion.
As a consequence, Classifiers tend to linger on

Fig. 5. Global input pattern presented
to the detection and classification pro-
cesses in our demonstration

Fig. 6. Pattern of PS(A) pheromones
that coordinates the Detectors’ move-
ments

Fig. 7. Pattern of PF pheromones that
represents the Detectors’ findings

244 S.A. Brueckner and H.V.D. Parunak

patterns that induce high confidence levels,
which, in turn, result in increased PC pheromone
deposit rates at the location of the pattern.

Figure 8 shows the result of the pattern clas-
sification process in our demonstration. The
wind was assumed to run diagonally across the
region and thus of the three detected patterns
(Figure 7), only the diagonal one is highlighted
in the PC pheromones.

5 Conclusion

In this paper we presented a swarming agent architecture for the distributed detection
and classification of spatio-temporal patterns in a heterogeneous real-time data
stream. We motivate our decentralized approach with the requirements for an active
surveillance system for epidemic outbreaks caused by a large-scale bioterrorist attack
on a civilian population, but the same architecture may be applied to a wide variety of
other surveillance applications, such as financial transactions, network diagnosis, or
power grid monitoring.

In our approach we deploy large populations of simple mobile agents in a physi-
cally distributed network of processing nodes. At each such node we install a service
agent that is part of the application independent runtime environment and that enables
the agents to share information indirectly through their common computational envi-
ronment. The indirect information sharing permits the application agents to coordinate
their activities across entire populations.

This architecture may be adapted to the detection of various spatio-temporal pat-
terns and new classification schemes may be introduced at any time through new
agent populations. The system is scalable in space and complexity because of the con-
sequent localization of processing and interactions. The system protects the poten-
tially proprietary or private data through simple provable local processes that execute
at or near the actual source of the data.

We successfully implemented a subset of the proposed mechanisms in a simplified
software demonstration. The observed robustness, scalability and fast convergence to
an acceptable solution provide strong evidence for the potential of our swarming
agents approach to pattern detection and classification.

References

[1] D. Anhalt. The Changing Nature of Commercial Satcom and its Impact on US Military
Advantage. Satellite 2001, Office of Net Assessment, Washington, DC, 2001.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artifi-
cial Systems. New York, Oxford University Press, 1999.

[3] E. Bonabeau and C. Meyer. Swarm Intelligence: A Whole New Way to Think About
Business. Harvard Business Review, 79(May), 2001.

[4] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Ph.D. Thesis at Humboldt University Berlin, Department of Computer Science, 2000.

Fig. 8. Pattern of PC pheromones that
highlights the diagonal pattern

Swarming Distributed Pattern Detection and Classification 245

[5] S. Brueckner and H.V.D. Parunak. “Multiple Pheromones for Improved Guidance.” Pro-
ceedings of the 2nd DARPA-JFACC Symposium on Advances in Enterprise Control.
Minneapolis, MN, USA. July, 2000.

[6] S. Brueckner and H.V.D. Parunak. “Analysis and Design of Self-Organizing Systems of
Fine-Grained Agents.” ERIM white paper available from the authors. July, 2001.

[7] P.-P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles chez Bel-
licositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d'interpréta-
tion du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41-84, 1959.

[8] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. San Francisco, Morgan
Kaufmann, 2001.

[9] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997.

[10] H. V. D. Parunak, A. D. Baker, and S. J. Clark. The AARIA Agent Architecture: From
Manufacturing Requirements to Agent-Based System Design. Integrated Computer-
Aided Engineering, 8(1):45-58, 2001.

[11] H. V. D. Parunak, S. A. Brueckner, J. Sauter, and J. Posdamer. Mechanisms and Military
Applications for Synthetic Pheromones. In Proceedings of Workshop on Autonomy Ori-
ented Computation, 2001.

[12] C. W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model. Com-
puter Graphics, 21(4 (July)):25-34, 1987.

[13] G. Theraulaz, S. Goss, J. Gervet, and J. L. Deneubourg. Task Differentiation in Polistes
Wasp Colonies: A Model for Self-Organizing Groups of Robots. In Proceedings of First
International Conference on Simulation of Adaptive Behavior, pages 346-355, MIT
Press, 1991.

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 246 – 263, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Digital Pheromones for
Coordination of Unmanned Vehicles

H. Van Dyke Parunak, Sven A. Brueckner, and John Sauter

Altarum, 3520 Green Court, Suite 300, Ann Arbor,
MI 48105-1579

1.734.302-{4684, 4683, 4682}
{van.parunak, sven.brueckner, john.sauter}

@altarum.org

Abstract. One of the parade examples of agent coordination through a shared
environment is the use of chemical markers, or pheromones, for path planning
in insect colonies. We have developed a digital analog of this mechanism that is
well suited to problems such as the control of unmanned robotic vehicles, and
extended it in novel ways to provide a rich set of tools for robotic control. We
introduce the approach, describe the mechanisms we have developed, and
summarize the technology’s performance in a series of scenarios reflecting
military command and control.

1 Introduction

Many social insect species coordinate the activities of individuals in the colony with-
out direct communication or complex reasoning. Instead, they deposit and sense
chemical markers called “pheromones” in a shared physical environment that partici-
pates actively in the system’s dynamics. The resulting coordination is robust and
adaptive. Seeking such characteristics in engineered systems, we have developed a
software runtime environment that uses digital pheromones (data structures inspired
by the insect model) to coordinate computational agents using mechanisms similar to
those of social insects.

We have applied digital pheromone mechanisms to the problem of controlling air
combat missions, with special emphasis on unmanned air vehicles. [11]. In the course
of our experimentation, we have developed several mechanisms that are promising for
agent coordination in general. This report describes pheromone-based movement con-
trol as a variety of potential-field-based methods (Section 2), reviews the mechanisms
we have developed (Section 3), and describes their performance in several air combat
scenarios (Section 4).

2 Potential Fields via Pheromones

From an engineering perspective, pheromones are a particularly attractive way to con-
struct a potential field that can guide coordinated physical movement.

Digital Pheromones for Coordination of Unmanned Vehicles 247

2.1 Potential Fields

Potential-based movement systems are inspired by electrostatics. The (vector) electric
field rE at a point in space is defined as the force felt by a unit charge at that point.

We define a (scalar) potential field

rdE
P

P

2

1
21 (1)

by integrating this vector field from an arbitrary reference point to each point in the
space. Conversely, the field may be expressed as the gradient of the potential,

E , and a massless charged particle will move through space along this gradi-

ent. In electrostatics, the field is generated by the physical distribution of charges ac-
cording to Coulomb’s law. Einstein’s extension of the formalism to gravity leads to a
gravitational field generated by the physical distribution of mass. Thus the movement
of a massive charged particle will follow a composition of two fields.

The notion of movement guided by a potential gradient has been applied to other
situations in which the field is generated, not by natural physical phenomena, but by
synthetic constructs. A parade example is robot navigation [14], which automatically
maps from a given distribution of targets and obstacles to a movement plan. In such
applications, the designer of the field is not limited to two components of the field
(electrostatic and gravitational), but can include many different fields to represent dif-
ferent classes of targets and obstacles.

We use a potential field to guide unmanned robotic vehicles (URV’s) through the
battlespace (Figure 1). In this scenario, robotic vehicles seek to destroy the tank farm,
which is defended by two missile batteries. The vehicles climb an attractive gradient
centered on the tank farm while avoiding repulsive gradients centered on the threats.
To be useful in warfighting, this field requires four characteristics (mnemonically, “4-D”):

Diverse.—It must fuse information of various types and from various sources, includ-
ing targets to be approached, threats to be avoided, and the presence of other URV’s
with whom coordina-
tion is required.

Distributed.—Centra-
lized processing of a
potential field imposes
bottlenecks in com-
munications and proc-
essing, and generates
localized vulnerabili-
ties to attack. Ideally,
the potential field
should be stored close
to where the informa-
tion that it integrates is
generated, and close to
where it will be used.

Physical Assets Field Representation

Repulsive

Repulsive

Attractive

Physical Assets Field Representation

Repulsive

Repulsive

Attractive

Fig. 1. Potential Fields Corresponding to Physical Assets

248 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

Decentralized.—Efficiency and robustness also dictate that components of the sys-
tem be able to make local decisions without requiring centralized control, ideally on
the basis of nearest-neighbor interactions with one another.

Dynamic.—The battlespace is an uncertain and rapidly changing environment, and
the methods and architecture used to construct and maintain the field must be able to
incorporate such changes rapidly into the field.

An architecture inspired by insect pheromones satisfies these requirements, and
can be applied to warfighting scenarios.

2.2 Digital Pheromones

Insects coordinate without direct communication, by sensing and depositing phero-
mones (chemical markers) in the environment [10]. For example, the networks of
paths that they construct joining their nests with available food sources form mini-
mum spanning trees [5], minimizing the energy ants expend in bringing food into the
nest. This structure emerges as individual ants wander, depositing and sensing phero-
mones.

The real world provides three operations on chemical pheromones that support
purposive insect actions.

It aggregates deposits from individual agents, fusing information across multiple
agents and through time.

It evaporates pheromones over time. This dynamic is an innovative alternative to
traditional truth maintenance. Traditional knowledge bases remember everything they
are told unless they have a reason to forget something, and expend large amounts of
computation in the NP-complete problem of detecting inconsistencies that result from
changes in the domain. Ants immediately begin to forget everything they learn, unless
it is continually reinforced. Thus inconsistencies automatically remove themselves
within a known period.

It diffuses pheromones to nearby places, disseminating information for access by
nearby agents.

The pheromone field constructed by the ants in the environment is in fact a poten-
tial field that guides their movements. Unlike many potential fields used in conven-
tional robotics applications, it satisfies the 4-D characteristics:

Diverse.—Ants can respond to combinations of pheromones, thus modifying their re-
action to multiple inputs at the same time.

Distributed.—The potential field is generated by pheromone deposits that are stored
throughout the environment. These deposits do their work close to where they are
generated, and are used primarily by ants that are near them.

Decentralized.—Both ant behavior and pheromone field maintenance are decen-
tralized. Ants interact only with the pheromones in their immediate vicinity, by
making deposits and reading the local strength of the pheromone field. Because dif-
fusion falls off rapidly with distance, deposits contribute to the field only in their
immediate vicinity.

Digital Pheromones for Coordination of Unmanned Vehicles 249

Dynamic.—Under continuous reinforcement, the pheromone field strength stabilizes
rapidly, as a concave function of time (proportional to

t
dE

0
 , (2)

where E (0,1) is the evaporation rate) [2]. Thus new information is quickly inte-
grated into the field, while obsolete information is automatically forgotten, through
pheromone evaporation.

An implementation of digital pheromones has two components: the environment
(which maintains the pheromone field and performs aggregation, evaporation, and
diffusion), and the walkers (which deposit and react to the field maintained by the en-
vironment). Our implementation has two corresponding species of agents. A set of
place agents with a Neighbor relation defining adjacency makes up the environment,
and each walker is represented by a walker agent.

Each place agent maintains a scalar variable corresponding to each pheromone fla-
vor. It augments this variable when it receives additional pheromones of the same fla-
vor (whether by deposit from a walker or by propagation from a neighboring place),
evaporates the variable over time, and propagates pheromones of the same flavor to
neighboring place agents based on the current strength of the pheromone. The under-
lying mathematics of the field developed by such a network of places, including criti-
cal stability theorems, are described elsewhere [2]. If the strength of the pheromone at
a location drops below a threshold, the software no longer processes that pheromone,
and it disappears.

In principle, there are no restrictions on the graph of place agents. In physical
movement problems, each place agent is responsible for a region of physical space,
and the graph of place agents represents adjacency among these regions. There are
different ways in which place agents can be assigned to space. In the work reported
here, we tile the physical space with hexagons, each representing a place agent with
six neighbors.

A walker agent inhabits one place agent at any given time. It can read the current
strength of pheromones at that place as a function of their flavors, and deposit phero-
mones into the place. It can also determine from the place agent the relative strength
of a given flavor at the place and at each of its neighbors. A walker moves from one
place to another by spinning a roulette wheel whose segments are weighted according
to this set of strengths.

Such techniques can play chess [4] and do combinatorial optimization [1], and we
have applied them to manufacturing [2] and military C2 [11].

3 Basic Mechanisms

We have explored several basic mechanisms essential to the engineering deployment
of pheromone mechanisms. These fall into three broad categories: combinations of
multiple pheromones, using history in movement decisions, and ghost agents. Some
of the results discussed in this section are expounded at more length in other publica-

250 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

tions, but are drawn together here so that they can be more readily considered as an
integrated system.

3.1 Pheromone Vocabulary

There are two ways in which the pheromone vocabulary can be multiplied. First, dif-
ferent flavors may reflect different features of the environment (e.g., Red (hostile) air
defenses, Blue (friendly) bases). These flavors have different semantics. Second, dif-
ferent flavors with the same semantics (e.g., all generated by the same feature) may
differ in their evaporation or propagation rate or threshold, thus having different dy-
namics.

Pheromones with Different Semantics.—We explored the effect of increasing the
semantics of a pheromone vocabulary in the context of the classic missionary-
cannibal problem [12]. Three missionaries and three cannibals are together on one
bank of a river, with a dugout canoe capable of carrying only one or two people. If at
any time the cannibals outnumber the missionaries on either bank of the river, they
will eat them. The problem is to plan a sequence of moves that gets all six people
safely across the river.

At each decision epoch, only those agents on the bank with the boat make a
movement decision. Each such agent decides whether to move by evaluating a per-
sonal choice function that returns a real number between 0 and 1, evaluating a random
variable uniformly distributed on [0,1], and comparing these two values. If the ran-
dom number is less than the value of the choice function, the agent volunteers to
move. The actual riders in the boat are chosen randomly from the list of candidates.

The details of the agent’s decision are embedded in its choice function, which is a
function of the levels of the available pheromones. In principle, each individual agent
could have its own choice function, but in our experiments all Missionaries share one
choice function and all Cannibals share another.

We explore the performance of the system for various combinations of three phero-
mones: a bank pheromone that tells agents where they are, an undifferentiated population
pheromone deposited
by both Missionaries
and Cannibals, and
distinctive Mission-
ary and Cannibal
pheromones. Our
performance metric is
the number of steps
necessary for the sys-
tem to move the
agents from one bank
to the other. Because
of the stochastic na-
ture of the decisions,
different runs often
yield different num-

0 1 2 3 4 5
Bits

1.25

1.5

1.75

2

2.25

2.5

2.75

3
Log Median Length

R
BSmart

BPSmart
BMCSmart

Fig. 2. Performance and Pheromone Vocabulary (Error bars show
inter-quartile spread)

Digital Pheromones for Coordination of Unmanned Vehicles 251

bers of steps, and we report the median run
length over 100 runs.

Figure 2 shows the result for one series of
experiments, comparing three different
pheromone configurations. “R” indicates the
performance for agents executing a random
walk. “BSmart" shows the performance when
the agents have access only to a pheromone
indicating which bank they inhabit (thus one
bit of information). The performance at
“BPSmart” results from telling them in addi-
tion the total population on their bank. Since
there are six possible populations on either of
two banks, the information available is
Log2(2*6) = 3.58. “BMCSmart” reflects the
performance when missionaries and cannibals deposit distinct pheromones. There are
4*4 possible equilibrium values on each bank, but no agent will ever sense the com-
bination {0,0}, so the total information available is Log2(2*(4*4-1)) = 4.91. Figure 2
shows that log performance is linear in information content, so performance is expo-
nential in information content.

In these experiments, the agent’s choice function explicitly takes into account the
levels of the different pheromones. An alternative approach, used in our air combat
applications, computes a weighted function of the various input pheromones to create
a single "net pheromone" whose gradient walkers then follow. In this case, the basic
pheromone flavors are:

 RTarget: emitted by a red (hostile) target.
 GTarget: emitted by a blue (friendly) agent who has encountered a red target and is

returning to base.
 GNest: emitted by a blue agent who has left the base and is seeking a target.
 RThreat: emitted by a red threat (e.g., missile battery)

In addition, we provide the blue agent with Dist, an estimate of how far away the
target is.

Initially, we experimented with an equation of the form

DistRThreat

GTargetRTarget , (3)

where , , , , and are tuning factors, easily manipulated in a genetic algorithm or
particle swarm optimization [15, 16]. avoids singularities when other terms are 0.
This form attracts blue agents to targets or to the trails of other blue agents who have
found targets, avoids threats, and seeks to minimize distance to the target. While
yielding reasonable performance, this equation left some performance gaps. Manual
manipulation of the equation yielded the alternative form

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0

3 0 0 2 0 0 0 0 0 0
0 5 0 2 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0

0 0 0 0 2 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0
0 2 0 0 0 0 0 0 0 0

0 0 3 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 3 3 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3

5

5

3

3

3

33

2

3

3

2

2
2

2

2
2 2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0

3 0 0 2 0 0 0 0 0 0
0 5 0 2 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0

0 0 0 0 2 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0
0 2 0 0 0 0 0 0 0 0

0 0 3 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 3 3 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3

5

5

3

3

3

33

2

3

3

2

2
2

2

2
2 2

Fig. 3. Test Distribution of Pheromone
Sources

252 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

)1RThreatDistGNest

GTargetRTarget , (4)

which gives much improved performance. While more complex, this latter equation
could be discovered by genetic programming.

Pheromones with Different Dynamics.—Another technique involving multiple
pheromones uses pheromones with the same semantics but differing dynamics (e.g.,
rates of evaporation E and propagation F and threshold S) [3]. To motivate this mecha-
nism, consider the distribution of pheromone sources shown in Figure 3. Each source
(or background 0) is at one cell of a hexagonal grid.

We are interested in the guidance that the pheromone field offers a walker at a
given place. Let fi be the pheromone strength at place i. The guidance gj available to a
walker at place j is

)(1

1
)(jNf

f
Maxg

i

i

jNji
j . (5)

Guidance thus ranges from 0 (if all accessible places have the same pheromone
strength) to 1 (if only one place has pheromone and all the others have none).

Figure 4a,b shows the distribution of guidance (white = 1, black = 0) for two dif-
ferent propagation parameters F. When F is low (left plot), most places in the target-
rich region at the left of the figure have high guidance, but the pheromones do not
propagate across the targetless right side of the figure, yielding a broad “valley” with
low guidance. When F is high (right plot), propagation merges signals from individ-
ual sources, yielding low guidance in the target-rich region but a much narrower val-
ley on the right. Thus high propagation gives good long-range guidance but poor
short-range guidance, while low propagation gives good short-range guidance but
poor long-range guidance.

A reasonable resolution is to have each source deposit multiple pheromones with
different dynamics. A walker picks its next step first by measuring the guidance
available from each flavor, then computing its movement based on the pheromone
with highest guidance. Figure 4c shows the guidance field from six flavors with dif-
ferent dynamics, yielding both high guidance in the target area, and propagation of
pheromones across most of the eastern valley.

3.2 History

A walker’s movement through the graph of places should balance several factors. A
strong field gradient enables deterministic hill climbing that the walker should ex-
ploit. However, a weak gradient may result from noise in the system. In this case, it
does not provide reliable guidance. We would prefer that the walker continue moving
in the general direction of its previous steps if there is one, and otherwise that it ex-
plore more broadly.

To balance deterministic hill climbing and stochastic exploration, the walker
moves from one place to another by spinning a roulette wheel whose segments are

Digital Pheromones for Coordination of Unmanned Vehicles 253

weighted according to the relative strengths of a pheromone flavor (or weighted com-
bination of flavors) in the place and its neighbors. The mapping function from relative
pheromone weight to segment width determines the degree of stochasticity in the
walker’s behavior. If si’ is the perceived pheromone concentration at place i, the nor-
malized weight pi at that place is

1

'

'

j
j

i
i

s

s
p ,

(6)

where the summation ranges over place i and its neighbors, and the probability pi’ that
the walker will move to that place is

1

*

*

'

j

p

p

i
j

i

e

e
p .

(7)

The parameter determines the degree
of stochasticity in the walker’s movement.
On a hex grid, when < 4, selection prob-
abilities are more similar than the phero-
mone strengths would indicate, favoring
exploration, while > 5 tends to emphasize
stronger gradients, favoring exploitation.

To balance hill climbing against previ-
ous direction, we assign momentum to the
walker. Models of actual ant behavior usu-
ally restrict the ant’s ability to smell phero-
mones to some angle on either side of its
current orientation. In our implementation,
this technique takes the form of mul-
tiplying each segment in the walker’s rou-

E=
1
10 F=

1
10 S=

1
1000 E=

1
10 F=

9
10 S=

1
1000

a cb

E=
1
10 F=

1
10 S=

1
1000 E=

1
10 F=

9
10 S=

1
1000

a cb

Fig. 4. Guidance fields for low (a) and high (b) propagation parameters, and for a range of
six different propagation parameters (c)

a

d

c
b

e

a

d

c
b

e

Fig. 5. Path anisotropy in a hex lattice

254 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

lette wheel by a weight that is strongest in the direction the walker is currently head-
ing, and weakest in the direction from which it has just come.

Such a momentum works well if the walker is moving over continuous space.
However, representing (continuous) space as a (discrete) graph of place agents can
introduce anisotropies that confuse a simple momentum computation. Figure 5
shows five geodesics on a hex lattice. Trajectories a, b, and c maintain a constant
heading, but trajectories d and e experience local direction changes while executing
a shortest path across the lattice. A straightforward momentum function will inter-
fere undesirably with these necessary changes of direction. To avoid this problem,
each walker maintains an exponentially-weighted moving average of its past head-
ings and modulates the relative strengths of the pheromones in its vicinity by a
measure of the angular alignment between each candidate place and the current
value of the heading history.

3.3 Ghost Agents

So far, we have distinguished stationary place agents (corresponding to regions of the
problem space, and forming a graph structure representing the connectivity of that
space) from walker agents (mobile agents that are associated with one place agent at a
time and move among them according to the edges in the place network). For some
purposes, it is useful to further refine the concept of walkers into two species.

The walker associated with a single physical robot is its avatar. In Hindu my-
thology, the term refers to an incarnation of a deity, hence, an embodiment or mani-
festation of an idea or greater reality. In our system, an avatar is the manifestation
in our system of the greater reality (ground truth in the battlespace). A physical en-
tity has only one avatar, which travels with the physical entity that it represents. It
moves from one place agent to another only when its parent entity moves physically
from one region to another. Thus its speed is limited by the physical speed of its as-
sociated entity.

One avatar may send out many unembodied walkers, or ghosts. Ghosts move as fast
as the network among place agents can carry them. Because they are more numerous
than physical entities and their associated avatars, they can do “what-if” explorations
that physical entities
could not afford, and
generate emergent
behavior by their in-
teractions. Because
they move faster
than physical enti-
ties and their ava-
tars, they can look
ahead to plan an
avatar’s next steps.

Of particular in-
terest to robotic ap-
plications is the
emergence of dis-

Food

Nest

a. Initial Field b. Final Path

Food

Nest

a. Initial Field b. Final Path

Fig. 6. Path Condensation

Digital Pheromones for Coordination of Unmanned Vehicles 255

crete paths in the
pheromone field as
many ants concur-
rently read and rein-
force it. For example,
Figure 6a shows the
pheromone field de-
posited by a swarm
of ants wandering out
from their nest (at the
lower left of the fig-
ure) in search of food
(at the upper right).
Initially, the field is
roughly circularly
symmetrical, and
serves to guide food-bearing ants back home. Once some ants find the food and begin
returning home, this field rapidly collapses into a path (Figure 6b).

At first glance, this dynamic [6] violates second-law tendencies to increasing dis-
order in systems consisting of many components. Left to themselves, large popula-
tions tend to disorder, not organization. Natural systems can organize at the macro
level because their actions are coupled to a flow field at a micro level. Agents per-
ceive and orient themselves to the flow field and reinforce that field by their rational
action, as shown by the solid lines in Figure 7 [8]. Metaphorically, they drain unwanted
entropy from the macro level (where organization is desired) to the micro level (where
disorder is tolerated).

Traditional coordination mechanisms ignore the micro level completely, as agents
perceive and act directly on one another (dashed line in Figure 7). We link agents
through the environment so that perception and action serve both to coordinate multi-
ple agents and to control overall disorder.

We validate this mechanism of emergent coordination explicitly through experi-
ments that compute the entropy over time of
the pheromone molecules at the micro level
and the agents at the macro level [13]. The
increase in entropy at the micro level
(through Brownian motion of pheromone
molecules) more than balances the decrease
in entropy experienced by walkers following
the pheromone gradient.

The path emergence illustrated in Figure 6
is the result of interactions among many
walkers. Each walker’s behavior is highly
stochastic, performing a real-time Monte
Carlo search of its local vicinity, and contrib-
uting to the emergence of a long-range path.
In engineering applications, it may not be

Micro
Newtonian;
Force Field;
Entropy

Flow
(Entropy)

Flow
(Entropy)

Macro
Non-Newtonian
Flow Field
“Negentropy”

P
er

ce
p

ti
o

n

P
ercep

tio
n

"Currency"

R
ational A

ction

(Entropy
) R

at
io

na
l A

ct
io

n

(E
nt

ro
py

)

Pheromone
Dynamics

Perception
Rational Action

Agent 1 Agent 2

Traditional Agent
Dynamics

Key

Micro
Newtonian;
Force Field;
Entropy

Flow
(Entropy)

Flow
(Entropy)

Micro
Newtonian;
Force Field;
Entropy

Flow
(Entropy)

Flow
(Entropy)

Macro
Non-Newtonian
Flow Field
“Negentropy”

P
er

ce
p

ti
o

n

P
ercep

tio
n

Macro
Non-Newtonian
Flow Field
“Negentropy”

P
er

ce
p

ti
o

n

P
ercep

tio
n

"Currency"

R
ational A

ction

(Entropy
) R

at
io

na
l A

ct
io

n

(E
nt

ro
py

)

Pheromone
Dynamics

"Currency"

R
ational A

ction

(Entropy
) R

at
io

na
l A

ct
io

n

(E
nt

ro
py

)

Pheromone
Dynamics

Pheromone
Dynamics

Perception
Rational Action

Agent 1 Agent 2

Traditional Agent
Dynamics

Key

Perception
Rational Action

Agent 1 Agent 2Perception
Rational Action

Agent 1 Agent 2

Traditional Agent
Dynamics

Traditional Agent
Dynamics

Key

Fig. 7. Coordination through Environmental Fields

Fig. 8. Path to the nearer of two targets

256 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

feasible to ask hundreds of physical robots
to explore the domain in this manner, nor is
it necessary. As an avatar moves, it continu-
ously sends out ghosts. The interaction of
the ghosts forms the path, which is being
constantly revised to accommodate dynamic
changes in the environment.

Our experiments show this path formation
dynamic to be extremely robust and adap-
tive. Figure 8 shows the formation of a path
from a friendly airbase (lower right) to the
nearer of two targets (the house-shaped
icons), avoiding threats (the ra-
dar icons). If we increase the
strength of the left-hand target to
twice that of the closer target,
the path will lead there instead.
Figure 9 shows a path to a target
protected by a gauntlet of
threats, a configuration that re-
sists classical potential field
methods.

When ghost agents choose
between two targets, they cannot
tell whether one target’s phero-
mone is stronger because it is
depositing at a higher rate, or
because it is nearer than the
other target. We explore the bal-
ance between these factors by
setting up two targets T1 and T2
diametrically opposite one an-
other from the ghosts’ origin,
with varying ratios of distance
and strength. Then we compute the
percentage p1 of runs (out of a to-
tal of 45) that form a path to T1
rather than to T2. Figure 10 plots
of this probability as a function of
the strength and distance ratios.
The dots represent experimental
observations, between which other
values are linear interpolations.
Most of the plot is dominated by
regions in which p1 is either 1 or 0.
The region within which both
strength and distance play an ac-

1 1.5 2 2.5 3 3.5 4 4.5
Log Strength Ratio S2/S1

D
is

ta
nc

e
R

at
io

 D
2/

D
1

1

2

3

4

5

p1 = 1

p1 = 0

1 1.5 2 2.5 3 3.5 4 4.5
Log Strength Ratio S2/S1

D
is

ta
nc

e
R

at
io

 D
2/

D
1

1

2

3

4

5

p1 = 1

p1 = 0

Fig. 10. Trade between target strength and distance

Fig. 9. Threading a gauntlet

0

500

1000

1500

2000

0 20 40 60 80

Target Distance

T
im

e
S

te
p

s

Fig. 11. Time for first ghost to reach target

Digital Pheromones for Coordination of Unmanned Vehicles 257

tive role in target selection is relatively narrow. As both ratios grow, the difference in
distance overwhelms the difference in strength.

Another important trade in understanding the behavior of ghost agents is between
time and distance. When they are far from a target, ghost agents execute a random
walk. Closer to the target, they can sense the target’s pheromone field, and climb its
gradient. One might expect that the number of steps required to reach a target would in-
crease precipitously as the distance between a ghost’s origin and its target grows. In
fact, the transition is quite well behaved (Figure 11).

4 Operational Scenarios

We have demonstrated these mecha-
nisms in military air operations in four
increasingly sophisticated scenarios.

4.1 SEADy Storm

SEADy Storm [7] is a war game used
to explore technologies for controlling
air tasking orders. The battlespace is a
hexagonal grid of sectors, each 50 km across). Friendly (Blue) forces defend a region
in the lower left against invading Red forces that occupy most of the field. Red’s
playing pieces include ground troops (GT’s) that are trying to invade the Blue terri-
tory, and air defense units (AD’s, surface-to-air missile launchers) that protect the
GT’s from Blue attack. Blue has bombers (BMB’s) that try to stop the GT’s before
they reach the blue territory, and fighters tasked with suppressing enemy air defenses
(SEAD’s).

Each class of unit has a set of commands from which it periodically chooses.
Ground-based units (GT and AD) choose a new command every 12 hours, while air
units (BMB and SEAD) choose
every five minutes, reflecting the
time it would take the resource to
cross a sector. The commands
fall into three categories (Table
1). GT cannot attack Blue forces,
but can damage BMB’s if they
attack GT.

Blue can attack AD and GT
when they are moving or attack-
ing, and AD may attack any Blue
forces that are not moving or
waiting. Each unit has a strength
that is reduced by combat. The
strength of the battling units, to-
gether with nine outcome rules,
determine the outcome of such

Table 1. Unit Commands in SEADy Storm

 Move Attack Wait
AD Relocate Fire (on any

Blue aircraft)
Hide
Deceive

GT Advance Hide
SEAD NewSectors AttackAD Rest
BMB NewSectors AttackAD

AttackGT
Rest

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

(10,90) (20,80) (50,50) (80,20) (90,10)

R
ed

 (A
D

,G
T)

Blue (SEAD,BMB)

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

(10,90) (20,80) (50,50) (80,20) (90,10)

R
ed

 (A
D

,G
T)

Blue (SEAD,BMB)

Fig. 12. Red Strength in Blue as a function of force
composition

258 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

engagements. Informally, the first five
rules are:

1. Fatigue: The farther Blue flies, the
weaker it gets.

2. Deception: Blue strength decreases
for each AD in the same sector that
is hiding.

3. Maintenance: Blue strength de-
creases if units do not rest on a
regular basis.

4. Surprise: The effectiveness of an
AD attack doubles the first shift af-
ter the unit does something other
than attack.

5. Cover: BMB losses are greater if
the BMB is not accompanied by
enough SEAD.

Rules 6-9 specify the percentage
losses in strength for the units en-
gaged in a battle, based on the com-
mand they are currently executing.
For example, Rule 9 states: “If BMB
does “AttackGT” and GT does “Ad-
vance”: a GT unit loses 10% for each
BMB unit per shift; a BMB unit loses
2% per GT unit per shift.”

The primary parameter explored in
the experiments reported here is the
proportion of SEAD in the Blue mili-
tary, and of AD in the Red military.
Each side began with a 100 units,
each with unit strength, and 10%,
20%, 50%, 80%, or 90% of SEAD or
AD. The uneven spacing reflects a
basic statistical intuition that interest-
ing behaviors tend to be concentrated
toward the extremes of percentage-
based parameters. In current military
doctrine, 50% is an upper limit on
both AD and SEAD. We explore
higher values simply to characterize
the behavioral space of our mechanisms.)

The central outcome is total Red strength in Blue territory at the end of the run
(Figure 12). The landscape shows several interesting features, including

0-3

4-6
4-6

7-9

10
-

12

7
-
9

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

%

Blue SEAD/BMB configuration

R
ed

 A
D

/G
T

 c
o

n
fi

g
u

ra
ti

o
n

0-3
4-64-6

7-9

10-
12

7-
9

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

16-18

0-3

4-6
4-6

7-9

7-9

10-
12

10-
12

13-
15

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

0-3

4-6

7-9

7-9

10-
12 13-15

0-3

4-6
4-6

7-9

10
-

12

7
-
9

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

%

Blue SEAD/BMB configuration

R
ed

 A
D

/G
T

 c
o

n
fi

g
u

ra
ti

o
n

0-3
4-64-6

7-9

10-
12

7-
9

0-3

4-6
4-6

7-9

10
-

12

7
-
9

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

%

Blue SEAD/BMB configuration

R
ed

 A
D

/G
T

 c
o

n
fi

g
u

ra
ti

o
n

0-3
4-64-6

7-9

10-
12

7-
9

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

16-18

0-3

4-6
4-6

7-9

7-9

10-
12

10-
12

13-
15

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

16-18

0-3

4-6
4-6

7-9

7-9

10-
12

10-
12

13-
15

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

0-3

4-6

7-9

7-9

10-
12 13-15

(10, 90) (20, 80) (50, 50) (80, 20) (90, 10)
(10,90)

(20,80)

(50,50)

(80,20)

(90,10)

Blue SEAD/BMB

R
ed

 A
D

/G
T

0-3

4-6

7-9

7-9

10-
12 13-15

Fig. 13. Population of Red in Blue without phe-
romones (top), with pheromones attracted to
both targets and threats (center), and attracted to
targets but repelled by threats (bottom)

Digital Pheromones for Coordination of Unmanned Vehicles 259

 a “valley” of Blue dominance for all Red ratios when Blue SEAD is between 50%
and 80%, with slightly increasing Red success as the AD proportion increases;

 clear Red dominance for lower SEAD/BMB ratios, decreasing as SEAD increases;
 a surprising increase in Red success for the high SEAD and low AD levels.

Figure 13 compares the population of Red in Blue territory as a function of red and
blue force composition for three different Blue control strategies. In the top plot, Blue
does not use pheromones at all. The variations are due to the intrinsic dynamics of the
combat, yielding a narrow valley up the center of the plot where Red’s population is 3
or less (the criterion for Blue victory). When Blue uses pheromones to seek out Red
targets and threats (middle plot, shown in profile in Figure 13), the wider valley
reflects improved Blue performance. In the bottom figure, when Blue uses
pheromones to avoid threats and approach targets, the valley with the lowest Red
population is about the same area but of a very different shape than in the previous
case, but the next level of Red occupation (4-6) is much larger, showing a reduction in
higher levels of Red occupation.

A detailed discussion of the dynamics of this scenario and effects when we change
the modeling formalism is available at [9].

4.2 CyberStorm

At the next level of sophistication, we expand the range of unit types. Red now has
armored and infantry battalions, air defense units, distinct headquarters types for
regiments, air defense, and the entire corps, and fueling stations. Blue has three types
of fighters and two types of bombers. The environment includes bridges and road
crossings (which speed the movement of ground units that encounter them) and oil
fields (which Red seeks to attack and Blue seeks to protect). Combat outcome is
based on the percentage survival of the oil fields.

Using this enriched environment, we have explored a variety of issues around blue
decision-making. In these experiments (as in SEADy Storm), Blue resources move di-
rectly in response to Red pheromones, without using ghosts. Our experiments show
that reasonable numbers of Blue resources cannot sample the pheromone field ade-
quately to overcome the stochasticity inherent in the domain. As a result, outcomes
vary widely with random seeds. These experiments demonstrated the need for ghost
agents to sample the primary pheromone field at a statistically more significant level,
and preprocess it for use by Blue avatars and the physical resources with which they
are associated.

4.3 Super Cyber Storm

We exercised the ghost agents on a third model of the domain, which includes a sig-
nificantly wider range of entity types, combat resolution on the basis of individual
weapon type rather than unit type, more realistic dependencies among entities (for ex-
ample, the effectiveness of Red air defense now depends on the status of other Red air
defense units), and most importantly, a “pop-up” Red capability that lets us increase
greatly the range of changes in Red’s visibility as a scenario unfolds. This environ-
ment permits us to assess the effectiveness of ghost-based pheromones in dealing with
pop-up threats.

260 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

First, we make all Red threats visi-
ble and stationary, and let the ghosts
plan paths to the target for each of
181 offensive Blue missions against
an entrenched Red force. We
compute these paths using two dif-
ferent propagation parameters for
Red threat pheromones, one that
permits paths to fly relatively close to
the threats, and another that keeps
paths relatively far from the threats.
Then we turn on Red movement and
hiding behaviors, and compare the
outcome of two sets of runs. In one
set, Blue does not use ghosts or
pheromones at all, but simply flies each mission on its precomputed path. This mode
of operation corresponds to traditional pre-planned flight itineraries, except that our
pre-planned paths, based on complete knowledge of Red’s locations at the time of
planning, are superior to those that could be constructed in a real conflict. In the other
set of runs, Blue ignores precomputed paths and relies on ghosts to form paths for its
missions dynamically. We assess the outcome of each run by the total remaining
strength of Blue and Red assets at the end of the set of missions.

Figure 14 shows the medians over five runs of Red and Blue total unit strengths for
three configurations. In “pathscript,” each mission flies the path precomputed for it
using a high Red propagation parameter, leaving a conservative margin around Red
threats. In “pathscriptnarrow,” Blue again flies precomputed paths, this time using
paths computed with a lower Red propagation parameter, and permitting Blue to
come closer to Red locations. These less conservative paths lead to increased combat
between Blue aircraft and Red threats, and both Red and Blue losses increase com-
pared with “pathscript.” In “pathghost,” Blue missions ignore precomputed paths and
send out ghosts to compute their paths dynamically as the mission unfolds. In this
mode of operation, Blue’s losses are least, since it can now avoid pop-up Red threats.
As a result, it can deliver more weaponry to its assigned targets, increasing Red’s
losses in comparison with the other two scenarios.

4.4 Swarming UAV Experiment

Recently, these algorithms have been applied successfully to an experiment on the ef-
fectiveness of swarming UAV’s (unmanned air vehicles) in suppressing antiaircraft
threats in a wargame simulation conducted by the U.S. military. The pheromone ap-
proach shows significant performance improvements over the baseline. The public re-
port has not been released, but will be by the time the final version of this paper is
available, and details will be included in the publication version.

The U.S. Army Space and Missile Defense Battlelab, in support of the Joint Forces
Command, used a subset of the ADAPTIV algorithms in a limited-objective experi-
ment to determine the effects of employing affordable Swarming UAV’s against an
enemy’s mobile strategic Surface to Air Missiles (SAM’s; SA20’s) utilizing an anti-

20
30
40
50
60
70

pa
ths

cri
pt

pa
th

sc
rip

tn
ar

ro
w

pa
thg

ho
st

T
o

ta
l S

tr
en

g
th Red

Blue

Fig. 14. Effect of Ghost Agents in Super Cyber
Storm

Digital Pheromones for Coordination of Unmanned Vehicles 261

access strategy [17]. The study considered four cases. The base case was drawn from
a previous JFCOM study, Unified Vision 00, which utilized Global Hawks as UAV’s.
The comparison cases envisioned a swarm of smaller UAV’s, with flight characteris-
tics typical of a LOCASS-type platform. The study cases were 1) UAV’s with sensors
only, 2) UAV’s with both sensors & munitions, and 3) UAV’s with sensors/ muni-
tions/jammers. The munitions on armed UAV’s were deployed by flying the UAV
into the target, thus sacrificing the UAV. The matrix also included excursions for each
of the study cases that varied the quantities (10, 50,100) of UAV’s in the swarm. The
base case and study case excursions resulted in a total of 10 excursions with 10 runs
each. The results were then analyzed for statistically supported comparisons across
several measures of effectiveness (MOE’s). The results for UAV’s with sensors,
weapons, and jammers were the same as those for UAV’s with only sensors and
weapons.

 Percent of Red assets detected: all swarming cases significantly outperformed the
base case, and larger swarms significantly outperformed smaller ones. Sensor-only
cases were slightly better than cases with multi-function UAV’s, presumably be-
cause the population of armed UAV’s decreases over the run as some UAV’s func-
tion as weapons. The greatest difference was 30% detection (base case) vs. 95%
detection (100 sensor-only UAV’s).

 Percent reduction of successful TBM launches: no significant difference from
base case.

 Percent of Red assets destroyed (by type): the smallest swarm of sensor-only
UAV’s did not significantly outperform the base case, but all other swarms did.
Larger swarms significantly outperformed smaller ones, and swarms in which
UAV’s were armed outperformed those in which UAV’s carried only sensors. The
greatest difference for each category of Red asset is between the base case and a
swarm of 100 armed UAV’s. The differences are 25% destroyed vs. 63% for TBM
TEL’s, 5% vs 56% for tombstone radars, and 6% vs. 68% for SAM TEL’s.

 Percent of Blue assets destroyed: no significant difference from base case. (UAV’s
are considered expendable, and not counted among blue assets for the purpose of
this statistic.) When measured as a percentage of total missions flown, this metric
drops slightly for larger swarms and for armed UAV’s compared with unarmed
ones, but the differences are still within the margin of error of the experiment.

 System Exchange Ratio (SER): the base case had a SER of 0.51, indicating that
Blue lost twice as many assets as Red. All swarms except the 10-unit sensor-only
swarm significantly outperformed the baseline. Larger swarms outperformed
smaller ones, and armed UAV’s outperformed unarmed ones. The best SER, for a
swarm of 100 armed UAV’s, was 4.56.

It has been observed that the improved performance in these scenarios is due to the
increased number of sensors deployed in the battlespace, not to the use of a swarming
algorithm per se. However, no competing algorithm can coordinate a hundred UAV’s
effectively. Current command and control mechanisms require multiple human opera-
tors per UAV, and coordination across such a team poses formidable problems. The

262 H.V.D. Parunak, S.A. Brueckner, and J. Sauter

swarming approach is valuable precisely because it does not require a large cadre of
operators.

In September and October of 2004, these mechanisms were used to control physi-
cal UAV’s in a demonstration at the Aberdeen Proving Grounds, Aberdeen, MD.

5 Summary

Digital pheromones are a powerful mechanism for controlling the movement of
agents through space. They provide the elegance of potential field methods, with par-
ticular support for integrating diverse information sources, processing information in
a completely distributed and decentralized environment, and coping with dynamic
changes in the landscape. In exploring successively complex military scenarios, we
have developed a toolkit of methods and mechanisms, including pheromone vocabu-
laries that vary in both semantics and dynamics, mechanisms for incorporating agent
momentum into movement decisions, ghost agents to preprocess the pheromone field
and reduce stochasticity at the level of physical resources, and visualization mecha-
nisms to enable human stakeholders to understand and monitor the emergent behavior
of the system.

Acknowledgments

This work is supported in part by the DARPA JFACC program under contract
F30602-99-C-0202 to ERIM CEC, under DARPA PM’s COL D. McCorry and MAJ
S. Heise, Chief Technologist Steve Morse, and Rome Labs COTR’s C. Defranco and
T. Busch. The experiment described in Section 4.4 was conducted under the auspices
of the Joint Experimentation Directorate of the US Joint Forces Command. The views
and conclusions in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government. Realization of these
concepts owes much to our research team, including E. Feibush, E. Greene, O. Gil-
more, R. Matthews, and M. Nandula. Portions of this technology are covered by US
and international patents pending.

References

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artifi-
cial Systems. New York, Oxford University Press, 1999.

[2] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science,
2000. Available at http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-
21/PDF/Brueckner.pdf.

[3] S. Brueckner and H. V. D. Parunak. Multiple Pheromones for Improved Guidance. In
Proceedings of Symposium on Advanced Enterprise Control, 2000.

Digital Pheromones for Coordination of Unmanned Vehicles 263

[4] A. Drogoul. When Ants Play Chess (Or Can Strategies Emerge from Tactical Behaviors?
In Proceedings of Fifth European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW ’93), pages 13-27, Springer, 1995.

[5] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Self-organized Shortcuts in the
Argentine Ant. Naturwissenschaften, 76:579-581, 1989.

[6] D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár. Active Walker Model for the For-
mation of Human and Animal Trail Systems. Institute of Theoretical Physics, Stuttgart,
Germany, 1998. Available at http://xxx.lanl.gov/ps/cond-mat/9806097.

[7] A. Kott. SEADy Storm. In A. Kott, editor, JFACC, Carnegie Group, Inc., 2000. Avail-
able at http://www.altarum.net/cec/projects/adaptiv/SeadyStorm-v1.2.doc.

[8] P. N. Kugler and M. T. Turvey. Information, Natural Law, and the Self-Assembly of
Rhythmic Movement. Lawrence Erlbaum, 1987.

[9] H. V. Parunak, S. Brueckner, J. Sauter, and R. Matthews. Distinguishing Environmental
and Agent Dynamics: A Case Study in Abstraction and Alternative Modeling Technolo-
gies. In A. Omicini, R. Tolksdorf, and F. Zambonelli, Editors, Engineering Societies in
the Agents' World (ESAW'00), vol. LNAI 1972, Lecture Notes in Artificial Intelligence,
pages 19-33. Springer, Berlin, 2000. Available at http://www.altarum.net/~vparunak/
esaw00.pdf.

[10] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997. Available at http://www.altarum.net/
~vparunak/gotoant.pdf.

[11] H. V. D. Parunak. Adaptive control of Distributed Agents through Pheromone Tech-
niques and Interactive Visualization. In H. V. D. Parunak, J. Sauter, and R. S. Matthews,
editors, ERIM CEC, 2000. Available at www.altarum.net/cec/projects/adaptiv/.

[12] H. V. D. Parunak and S. Brueckner. Ant-Like Missionaries and Cannibals: Synthetic
Pheromones for Distributed Motion Control. In Proceedings of Fourth International
Conference on Autonomous Agents (Agents 2000), pages 467-474, 2000. Available at
http://www.altarum.net/~vparunak/MissCann.pdf.

[13] H. V. D. Parunak and S. Brueckner. Entropy and Self-Organization in Multi-Agent Sys-
tems. In Proceedings of The Fifth International Conference on Autonomous Agents
(Agents 2001), pages 124-130, ACM, 2001. Available at www.altarum.net/~vparunak/
agents01ent.pdf.

[14] E. Rimon and D. E. Kodischek. Exact Robot Navigation Using Artificial Potential Func-
tions. IEEE Transactions on Robotics and Automation, 8(5 (October)):501-518, 1992.

[15] J. Sauter, H. V. D. Parunak, S. A. Brueckner, and R. Matthews. Tuning Synthetic
Pheromones With Evolutionary Computing. In Proceedings of Genetic and Evolutionary
Computation Conference Workshop Program, 2001, pages 321-324, 2001. Available at
http://www.altarum.net/~vparunak/ECOMAS2001.pdf.

[16] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. Brueckner. Evolving Adaptive
Pheromone Path Planning Mechanisms. In Proceedings of Autonomous Agents and
Multi-Agent Systems (AAMAS02), pages 434-440, 2002. Available at www.altarum.net/
~vparunak/AAMAS02Evolution.pdf.

[17] SMDC-BL-AS. Swarming Unmanned Aerial Vehicle (UAV) Limited Objective Experi-
ment (LOE). U.S. Army Space and Missile Defense Battlelab, Studies and Analysis
Division, Huntsville, AL, 2001. Available at
https://home.je.jfcom.mil/QuickPlace/experimentation/PageLibrary85256AB1003BBEA
7.nsf/h_0036FB98FFD2ACCA85256AB2004161B0/D7680995272C266B85256B20004
E1BF0/?OpenDocument.

Motion Coordination in the Quake 3 Arena
Environment: A Field-Based Approach

Marco Mamei and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia, Italy

{mamei.marco, franco.zambonelli}@unimo.it

Abstract. This paper focuses on the problem of orchestrating the move-
ments of bot agents in the videogame Quake 3 Arena. Since the specific
patterns of movement that one may wish to enforce may be various, and
serve different purposes (have bots meet somewhere, move in formation,
or surrounding human players), a general and flexible approach is re-
quired. In this paper we discuss how the Co-Fields coordination model
can be effectively exploited to this purpose. The key idea in Co-Fields is
to model the agents’ environment by means of application-specific com-
putational force fields, leading agents’ activities to a globally coordinated
and adaptive motion behavior. The Co-Fields model is described both
in general terms and in the specific Quake 3 Arena implementation, and
several application examples are presented to clarify it. Also, the pa-
per outlines the general applicability of the approach besides the Quake
scenario and in areas such as mobile computing and mobile robots.

1 Introduction

Quake 3 Arena (Q3A) [1] belongs to the kind of first-person shooter (FPS) com-
puter games. The player controls a character (bot) fighting against other artifi-
cial bots (i.e., software agents). The most important tasks are staying alive and
killing opponents. The game provides a first-person perspective on the current
situation, see figures 4, 5, 7.

Bots in FPS have continually become more complex and more intelligent.
The original bots were completely oblivious to their environment and used fixed
scripts to attack the human player. Current bots, such as those found in Q3A
and Unreal Tournament [2], are actually autonomous goal-oriented agents. They
collect health and other power-ups, and they have a variety of tactics such as
circle-strafing and popping in and out of doorways [3].

Although current bots perform very well as single players, the mechanisms to
let them cooperate and coordinate each other activities (for example to surround
an enemy) are still under-developed [4, 2].

The aim of this paper is to present an approach to the problem of coor-
dinating the movements of a set of Q3A bots. The goals of bots’ coordinated

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 264–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Motion Coordination in the Quake 3 Arena Environment 265

movements can be various: letting them to meet somewhere, distribute them-
selves accordingly to specific spatial patterns, surround an enemy, or simply
move in the environment without interfering with each other.

In our perspective, any type of coordination - there included in videogames
- is built upon two main building blocks: (i) interaction mechanism (ii) con-
text awareness. With regard to the former point, it is obvious that coordina-
tion requires some form of interaction (e.g. communication): bot agents need to
communicate someway in order to decide/plan/synchronize their actions. With
regard to the latter point a bot agent can meaningfully coordinate with other
agents only if it is somehow aware of “what is around”, i.e., its context (i.e.
operational environment).

Starting from these considerations, we focus on the problem of dynamically
providing bots with effective interaction mechanisms and with simple, easy to
be obtained, and expressive contextual information.

To achieve our goal, we take inspiration from the physical world, i.e., from the
way particles in our universe move and globally self-organize accordingly to that
contextual information which is represented by potential fields. In particular,
in our approach, the environment and contextual information are represented
in the form of distributed computational fields (Co-Fields). Each agent of the
system can generate and have propagated by the environment specific fields,
conveying application-specific information about the local environment and/or
about itself. Agents can locally perceive these fields and move accordingly, e.g.
following the fields’ gradient. The result is a globally coordinated and adaptive
movement, achieved with very little efforts by agents.

The paper is organized as follows: Section 2 motivates and describes field-
based coordination as realized by the Co-Fields model. Section 3 explains how
the model has been implemented in Q3A. Section 4 presents some motion coor-
dination examples in Q3A. Section 5 discusses how the ideas presented can be
applied in a wide range of other scenarios and presents related work. Finally,
Section 6 concludes.

2 The Co-fields Approach

Let us consider the problem of letting a team of bots to meet somewhere in the
Q3A dungeon. As anticipated in the introduction, to achieve this task, bots need
some kind of interaction mechanism and some form of contextual information.

The mainstream solution for the above demands is to provide bots with a
map of the dungeon and with some kind of communication channel that bots can
use to agree on a specific location for the meeting. Although such solution may
appear natural, it may require bots to execute complex algorithms to decide and
negotiate where to meet and how to go there. This typically ends-up in brittle,
static and not-adaptive solutions.

From a general perspective, the problem is that context-awareness is gathered
by means of general purpose, not expressive and rather difficult to be processed
description of the environment. The acquired information tends to be strongly

266 M. Mamei and F. Zambonelli

separated from its usage by the agents, typically forcing them to execute complex
algorithms to elaborate, interpret and decide what to do with that information.

On the contrary, if the context would have been represented expressively to
facilitate agents in the achievement of a specific task, agents would trivially use
that information to decide what to do. For example, in the above meeting appli-
cation, if the agents would be able to perceive in their environment something
like a “red carpet” leading to the meeting room, it would be trivial for them to
exploit the information: just walk on the red carpet!

So the point is: how can we create the “red carpet”? How can we effectively
represent context for the sake of specific coordination problems?

An intriguing possibility is to take inspiration from the physical world, and in
particular from the way masses and particles in our universe move and globally
self-organize their movements accordingly to that local contextual information
that is represented by gravitational and electro-magnetic fields. These fields are
sorts of “red carpets”: particles achieve their tasks simply by following the fields.

This idea is at the basis of field-based coordination models [5]. Following this
approach, agents achieve their goals not because of their capabilities as single
individuals, but because they are part of an auto-organized system that leads
them to the goals achievement. Such characteristics also imply that the agents’
activities are automatically adapted to the environmental dynamic, which is
reflected in a changing field-based representation, without forcing agents to re-
adapt themselves. More in detail, the Co-Fields approach is centered on a few
key concepts:

1. Contextual information is represented by “computational fields”, spread by
agents and/or by the environment, diffused across the environment, and
locally sensed by agents;

2. A motion coordination policy is realized by letting the agents move following
the local shape of these fields, the same as a physical mass moves in accord
to the locally sensed gravitational field;

3. Both environment dynamics and agents’ movements may induce changes
in the fields’ surface, thus inducing a feedback cycle (point 2) that can be
exploited to globally achieve global and adaptive motion coordination.

2.1 Computational Fields

A computational field is a distributed data structure characterized by a unique
identifier, a location-dependent numeric value, and a propagation rule identi-
fying how the field should distribute in the network and how its value should
change during the distribution. Fields can be static or dynamic, basically a field
is static if once propagated its magnitude does not change over time; it is dy-
namic if its magnitude does. A field can be dynamic because for example its
source moves and the field, with some propagation delay, changes accordingly
its magnitude, or because for example its propagation rule its designed to remain
active and to change field value after some time. Fields are locally accessible by
agents depending on their location, providing them a local perspective of the

Motion Coordination in the Quake 3 Arena Environment 267

global situation of the system. For instance, with reference to the case study, a
Quake bot, call it the “prey” can spread in the map network infrastructure a
computational field (let’s call it PRESENCE field) whose value monotonically
increases as it gets farther from the bot. Such field implicitly enables any other
bots; call them the “predators”, from wherever in the dungeon, of sensing the
presence of the “prey” and its distance. Also, by sensing the local gradient of
the PRESENCE field, the “predators” could also know in which direction the
“prey” can be found (see figure 1).

2.2 Motion Coordination

In Co-Fields, the simple principle to enforce motion coordination is to have
agents move following the local shape of specific fields. For instance, a “predator”
bot looking for a “prey” bot can simply follow downhill the corresponding PRES-
ENCE field. Dynamic changes in the environment and agents’ movements induce
changes in the fields’ surface, producing a feedback cycle that consequently influ-
ences agents’ movement. For instance, should the “prey” bot be moving around
in the dungeon, the associated PRESENCE field would automatically update
its shape to reflect the new situation. Consequently, any agent/bot looking for a
“prey” would automatically re-adapt its movement accordingly. Should there be
multiple “prey” bots, they could decide to sense each other’s PRESENCE fields
so as to stay as far as possible from each other to better escape from “predators”.

In general, a Co-Fields based system can be considered as a simple dynamical
system and can be effectively modeled as that (see [6] for details on Co-Fields
modeling): agents are seen as balls rolling upon a surface, and complex adaptive
movements are achieved not because of the agents wills and skills, but because of
dynamic re-shaping of this surface. Of course, such a physical inspiration and the
strictly local perspective in which agents act promote a strictly greedy approach
in agents’ movement: agents act on the basis of their local viewpoint, disregarding
if a small sacrifice now (i.e., climbing a Co-Fields hill instead descending it) can
possibly lead to greater advantages in the future. In a circular track for example,
a “predator” looking for a “prey” that is moving clockwise, instead of greedily
follow downhill the PRESENCE field (as the Co-Fields approach promotes),
could better decide to move uphill to meet the “prey” counterclockwise. However,
this is a general drawback of distributed problem solving, where efficiency reasons
often rule out the possibility of globally informed decisions by distributed agents.

2.3 Application-Specific Coordination

The achievement of an application-specific coordination task is rarely relying on
the evaluation, as it is, of an existing computational field (as in the case of a
“predator” looking for a “prey” and simply following the specific PRESENCE
field of that “prey”. Rather, in most cases, an application-specific task relies on
the evaluation of an application-specific coordination field, as a combination of
some of the locally perceived fields. The coordination field is a new field in itself,
and it is built with the goal of encoding in its shape the agent’s coordination
task. Once a proper coordination field is computed, agents can achieve their co-

268 M. Mamei and F. Zambonelli

ordination task by simply following (deterministically or with some probabilistic
rule) the shape of their coordination field uphill or downhill (depending on the
specific problem) as if they were walking upon the coordination field associated
surface (see figure 1). For instance, in the case study, for “prey” bots to stay as
far as possible from each other, they can follow uphill a coordination field CF
resulting from the combination (the sum) of all the computational fields of each
“prey”:

CF =
n∑

i=1

PRESENCEi

At the moment, we still have not identified a general methodology to help us
identify, given a specific motion pattern to be enforced, which fields have to be
defined, how they should be propagated, and how they should be combined in a
coordination field. We are confident some methodology to help in that direction
can be found in the future, and would possibly make Co-Fields applicable to
a wider class of distributed coordination problems even beyond motion coordi-
nation. Nevertheless, the immediate applicability of Co-Fields is guaranteed by
two important considerations:

1. It is possible to get inspiration and of reverse engineer a wide variety of mo-
tion patterns found in Nature. For example, swarm intelligence phenomena
[7, 8] such as bird flocking, ant foraging and bee dances provide a variety of
useful motion patterns and can all be modeled with Co-Fields [9].

2. Complex motion patterns can be divided into simpler movements (e.g. mov-
ing along a square can be divided into following sequentially the four lines
composing the square edges). Thus, although it might be impossible to per-
form complex motion patterns by following only one field, such complex mo-
tions patterns could be easily achieved by following sequentially a number
of different fields.

3 Implementation

As anticipated in the introduction, to test the validity of our approach, we im-
plemented the Co-Fields model within the videogame Quake 3 Arena (Q3A).

There are mainly two options to exploit Q3A as an environment simulation
for multi-agent system:

1. write an external program (client-bot) that connects to the game as a human
player. This bot receives (via a suitable interface) a world representation
(roughly similar to the 3D scene view a human player can see) and can
perform actions by sending commands to the game engine (roughly similar
to joystick commands). With this approach the goal is to create a bot that
actually plays the game as a human player [10, 3].

2. write an internal modification (mod) of the game. A mod is a package of
changes made to the game altering the way in which the game was designed

Motion Coordination in the Quake 3 Arena Environment 269

2
4

2

3

1

3
3

4

5

X

Y

Fig. 1. Agent X propagates a PRESENCE field whose value has the minimum where
Agent X is located. Agent Y senses that PRESENCE field to approach agent X by
following downhill the PRESENCE field’s gradient

to work. A mod can involve something as simple as changing the speed at
which a rocket moves across a room or as complex as a complete overhaul
of the look and feel and even the rules of the game [11].

In our work we ventured with the latter approach for a very specific reason.
Since fields must be spread across the whole Q3A world, it appears difficult to
realize such functionality with a client-bot that is functionally equivalent to a
human player. Some kind of deeper modification appears to be required.

From a general perspective, this fact can be regarded as an example of the
importance of explicitly modeling the environment in a multi-agent system. In
fact, the power of the Co-Fields approach derives primarily from the fact that
the field-based representation of the environment provides agents with handy
information to achieve a specific task. This frees the agents from the burden of
mutually interacting to acquire suitable context information.

3.1 Quake 3 Arena Internals

Q3A has been designed as two separate interlocking components: the 3D engine
(proprietary) and the game logic (open-source). Mods are created modifying the
open-source part of Q3A and recompiling it with the rest of the code. In this
way, a mod programmer can disregard all the low-level details about the 3D
display and concentrate on high-level topics like bots’ behavior and game logic.

Before explaining how Q3A has been modified to implement Co-Fields, it is
fundamental to give some remarks on the bots general architecture. A bot is
build with a layered structure: the first layer manages the bot I/O operations,
the second one manages the execution of complex actions (e.g. walking to a room,

270 M. Mamei and F. Zambonelli

picking-up a weapon, etc.), the third layer is basically a finite state automaton
governing high-level decisions (e.g. when to attack, when to withdraw, etc.).
Eventually, the fourth one models the behavior of the commander when a squad
of bots is involved (see figure 2). Q3A works as a time-based simulation. Each
bot is given a 1/10 sec time-frame in which to run its code.

Team Leader AI

Misc . AI CommandsAI Network

Fuzzy ChatsNavigationGoalsCharacter

Area Awareness System Basic Action

Fig. 2. Bot layered architecture

Although the purpose of the bot layered architecture is to mask to the pro-
grammer the intricacies of dealing with low-level details and to focus only on
high-level artificial intelligence issues, for the purpose of implementing Co-Fields,
there are two low-level parts worth to be considered: the Area Awareness System
(AAS) and the bot’s Goals.

The AAS is the component in charge of providing the bot with a repre-
sentation of the Q3A world. Specifically, a bot perceives the world as a set of
not-overlapping, adjacent, convex areas. These areas are mainly used for navi-
gation purposes; routes in the Q3A world are basically a sequence of areas to be
traversed.

A bot is a goal-oriented agent, whose execution is mainly intended to pursue
some goals. There are either long-term goals (e.g. look for an enemy) and nearby
goals (e.g. pick a power-up while looking for an enemy). The fundamental point
to understand is that when, modifying the bots’ behavior, we tend to remain
on the high levels of its architecture. This means that bots are not controlled
by means of an algorithm prescribing something low-level like (e.g. walk north
10m, then turn left, then fire). But with something high-level and goal-oriented
as (e.g. look for heavy-weapons then hunt for enemies, until not injured).

3.2 Implementing Co-fields

To implement Co-Fields one has basically to: (i) have fields spread in the Q3A
world, (ii) change the way in which bots perceive their environment. Bots must
be provided with a field-based representation of the environment, (iii) the goal
of moving following fields’ gradients must be introduced.

In our implementation, each bot propagates only one field (such a fixed num-
ber is imposed by Q3A that does not allow dynamic memory allocation). Each
field is stored in an array having a number of cells equals to the number of areas
composing the Q3A world. Each cell stores the value of a field in a specific area.
In our implementation such a value is always a function of the distance between
the area considered and the area in which the bot (source) is located. At every

Motion Coordination in the Quake 3 Arena Environment 271

time-frame of the game, all the arrays are updated to reflect the current system
situation (see code in figure 3).

In standard (i.e. not modified) Q3A, bots perceive the world by means of
a set of areas as provided by the AAS. The AAS provides various information
on the kind and content of the areas (e.g. the area is full of water, contains a
power-up, etc.). In our modifications, we enriched such a model, to provide bots
with also the information on the kind of fields being spread in the areas and
their magnitudes.

Each bot is also associated with an array representing its coordination field.
Such an array is evaluated by composing the above described fields’ arrays.
Specifically, each bot selects the area where to move by looking, in its coor-
dination field array, for neighbor areas where the gradient goes e.g. downhill.
Then, the bot is committed to the long term goal LTG PATROL to the selected
area. This brings the bot to go (and patrol) the selected area. The looping of
these actions at each time-frame, lets the bot follow downhill its coordination
field.

int client;
// these are pointers to some areas in Q3A world
aas_areainfo_t infoarea; aas_entityinfo_t ent_field;
// with the following command ent_field points
// to the area occupied by bot client
BotEntityInfo(client, &ent_field);
for (i=1;i<=numareas;i++)
{
// The following command, within the for-cycle
// lets infoarea points to every area in the world
trap_AAS_AreaInfo(i, &infoarea);
// The field value is equal to the distance between the
// bot and the area. It is thus a field increasing its
// magnitude as it gets farther from the source.
dist = Distance(ent_field.origin,infoarea.center);
FIELD[client][i]=dist;
}

Fig. 3. Fragment of the Q3A modified file “ai main.c”.A PRESENCE field is spread
in Q3A world

4 Examples of the Use of Co-fields

To clarify the usage of Co-Fields in Q3A, we detail here some specific motion
coordination problems that bots may be in need to face.

4.1 Exploiting the PRESENCE Fields: Meetings and Predations

We have previously shown how the PRESENCE field can be exploited to detect
where a bot is located in the Q3A map and how it can be reached. Moreover,

272 M. Mamei and F. Zambonelli

Bots

Fig. 4. A snapshot of the meeting process in Quake 3 Arena. All the bots have met

the PRESENCE field can be exploited to enforce a variety of other interesting
motion patterns.

As a first example, let’s consider a “meeting” application to help a team
of bots to dynamically meet with each other. Although different policies can
be enacted to let a team of bots to meet somewhere (e.g., a specific point or
by a specific bot), here we concentrate on having the bots collaboratively walk
towards each other and eventually meet in some dynamically determined inter-
mediate point. If each member i of the group generate a PRESENCEi field, then
each bot i of them can evaluate its coordination field by taking the maximum
PRESENCE field of all the other bots:

CFi = max(PRESENCEj �=i)j = 1, 2, ..., n

and then follow such coordination field downhill. While the coordination fields
continuously change due to the concurrent movements of all the members of
the team each following its own coordination fields, the result is that the bots
gradually approach towards each other, until collapsing in a single point. In other
words, because agents actually attract each other, the system naturally converge
to the situation in which all the agents are in the same point.

Figure 4 shows a snapshot of Q3A with bots involved in the meeting process.
The key point to emphasize is that the meeting process, and Co-Fields in gen-
eral, is adaptive: it works well even independently of the characteristics of the
environment (e.g., of the map), without having to change a bit in the code of
agents or in the structure and propagation of computational fields.

As another example exploiting the PRESENCE fields, consider a team of bots
(“predators”) moving in an environment with the goal of surrounding and kill
the human player (“prey”). By getting inspiration from the behavior of wolves,

Motion Coordination in the Quake 3 Arena Environment 273

which succeed in collaboratively surround a prey using the simple strategy of
approaching the prey while trying to stay as far as possible from each other, we
can define the coordination field of a generic predator i in this way:

CF pred
i = PRESENCEprey −

n∑
j=1,j �=i

PRESENCEpred
j

expressing that the predators follow downhill the PRESENCE field of the prey
(to reach it) and, at the same time, tries to stay far from all other predators.
The result (see figure 5) is that predators, rather than simply approaching the
prey, are able to surround it.

Bot

Bot Bot

Bot

Fig. 5. Snapshot of the surrounding process in Quake 3 Arena. The bots surround the
player by closing all the escape doorways (remember that the game offers a first person
view)

4.2 Flocking

As another example, let us consider the problem of having bots move in the
Q3A map by maintaining an equal distance to each other, so as to form a regu-
lar formation. In an ideal, continuous case, a field that could be used to realize
that purpose could be the one in Figure 6(a). Let us call this field FLOCK, to
correctly attribute the fact that algorithms for moving in a formation has been
inspired by the movements of birds’ flocks [8]. Each agent has to generate a
FLOCK field with a minimum at a distance a from itself, where a is the distance
that must be preserved between agents to maintain the formation, and continu-
ously increasing for higher distances. Then, to guarantee that each agents stay
at a distance a from any other agents, the FLOCK fields generated by all the

274 M. Mamei and F. Zambonelli

agents in the environment (say, a total of n) must be composed in the following
coordination field:

CF (x, y, t) = min(FLOCKi(x, y, t) : i = 1, 2, ..., n)

where is the FLOCK field of the agent i, and CF is the coordination field.
to be followed downhill by agents. In other words, each agent i in the system
can evaluate its coordination field CF as a minimum combination of all the
other agents’ fields and simply follow downhill the coordination field obtained.
Globally, the system self-organizes in an almost regular grid, because all the
agents try to remain in one of the minimum points of the next agents’ fields and
thus they tend to maintain a regular distance of a (see figure 6(b) and figure 7).

(a) (b)

Fig. 6. (a) Single flock field (b) Global composition of the flock fields: bots maintain
an almost regular grid formation

5 Other Application Scenarios and Related Work

Other than videogames, field-based coordination and the Co-Fields model well
suit a wide array of application scenarios: from other videogames and movies to
pervasive computing, robotics and material self-assembly.

5.1 Co-fields in Other Scenarios

The problem of coordinating the movements of a group agents has lots of in-
teresting applications in several scenarios. Let us consider the exemplary per-
vasive computing problem of tourists visiting a museum assisted by personal
digital assistants. Specifically, we can focus on how tourists can be supported in
coordinating their movements with other, possible unknown, tourists. Such co-
ordination activities may include scheduling attendance at specific exhibitions,
having a group of students split in the museum according to teacher-specific
laws, helping a tourist to avoid crowd or queues, letting a group of tourist to
meet together at a suitable location, and even helping to escape accordingly to
specific emergency evacuation plans.

Motion Coordination in the Quake 3 Arena Environment 275

Bots

Fig. 7. Snapshot of the flocking process in Quake 3 Arena. Bots moving maintaining
regular distances from each other

To apply the Co-Fields model to this scenario, we need a computer infrastruc-
ture suitable in supporting fields propagation across the museum. Specifically,
we can suppose that the museum is provided with an adequate embedded com-
puter network. In particular, embedded in the museum walls (either associated
to each artistic items or to each museum room), there will be a network of
computer hosts, each capable of communicating with each other and with the
mobile devices located in its proximity via the use of a short-range wireless link.
The number of the embedded hosts and the topology of the network may de-
pend on the museum, but the basic requirement is that the network topology
mimics the topology of the museum plan (i.e. no network links between physical
barriers, like walls). On each host there will be a middleware providing basic
support for data storing (to store field values) and communication mechanisms
(to propagate fields) [6]. Moreover, we can suppose that tourists are provided
with a software agent running on some wireless handheld device, like a palm
computer or a cellular phone, in charge of giving her/him suggestions on where
to move.

Devices connect to nearby embedded hosts (to this end some kind of localiza-
tion mechanism has to be enforced [12]). They can inject fields across the network
and read field values in the neighborhood to enforce field-based coordination (e.g.
move to the room where the gradient of a field goes downhill). With this regard,
it is worth noting that the critical assumption made about the museum network
topology is about not having people stumbling at walls while following gradients.
More details on this Co-Fields application can be found in [13].

The above scenario and the associated motion coordination problems are of
a very general nature, being isomorphic to a lot of scenarios ranging from other
pervasive computing applications (such as, e.g., traffic management and forklifts

276 M. Mamei and F. Zambonelli

activity in a warehouse, where navigators’ equipped vehicles hint their pilots on
where to go), to Internet-scale scenarios (e.g. in software agents exploring the
Web, where mobile software agents coordinate distributed researches by moving
on various Web-sites). Therefore, our Co-Fields model can be applied also in
much diverse areas than the one considered [14, 13, 6].

5.2 Related Work

Several proposals, in the last few years, address the problem of supporting agents’
activities with coordination approaches similar to Co-Fields.

In the videogame domain, one of the most remarkable examples is represented
by the popular videogame “The Sims” [15]. “The Sims” exploits sorts of com-
putational fields, called “happiness landscapes” and spread in the virtual city in
which characters live, to drive the movements of non-player characters [16]. For
instance, if a character is hungry, it perceives and follows a happiness landscape
whose peaks correspond to places where food can be found, i.e., a fridge. After
having eaten, a new landscape will be followed by the character depending on
its needs. Although sharing the same inspiration, “Sims’ happiness fields” are
static and generated only by the environment. In Co-Fields, instead, fields are
dynamic and can change over time, and agents themselves are able to generate
fields to promote a stronger self-organization perspective.

Remaining in the entertainment domain, it is worth reporting that autonomous
agents, coordinating their movements and their actions, have been employed in
the recent movie “The Lord of the Rings, The Two Towers”. In the Helm’s deep
battle, to enhance the scene realism, the 50000 fighting characters have been
modeled by means of goal-oriented autonomous agents, developed within the
Massive framework [17]. In this approach agents interact with each other on a
strict local basis, without any long-range interactions. In our opinion, also this
kind of approach could take advantage of integrating long-range, mediated in-
teractions like those enabled by fields. These, in fact, would allow simulating
large-scale tactics, like a global flanking or a global surrounding.

Also outside the entertainment domain, similar approaches can be conve-
niently used. Several projects in the last few years have worked to facilitate
distributed-motion coordination. In robotics, the idea of potential fields driving
robotic movement is not new [5]. For instance, one of the most recent manifesta-
tions of this idea, the Electric Field Approach [18] was used to control a team of
Sony Aibo legged robots in the RoboCup domain. Following the EFA approach,
each Aibo robot builds a field-based representation of the environment from
the images captured by its head-mounted camera and decides its movements by
examining the fields’ gradients of this representation. Although close in spirit,
EFA and Co-Fields differ from the implementation point of view. In Co-Fields,
fields are distributed data structures actually spread in the environment; in EFA,
fields are just an agent’s internal representation of the environment and do not
actually exist. Co-Fields require a supporting infrastructure to host field data
structures, but they completely avoid the complex algorithms involved in field
representation and construction.

Motion Coordination in the Quake 3 Arena Environment 277

Field-based approaches are taking over also in futuristic and fascinating sce-
narios such as self-assembly of agent-based micro-particles. One of the most
successful approaches in this scenario has been proposed within the amorphous
computing research [19]. The particles constituting an amorphous computer have
the basic capabilities of propagating sorts of abstract computational fields in the
network, and to sense and react to such fields. In particular, particles can trans-
fer an activity state towards directions described by fields’ gradients, so as to
make coordinated patterns of activities emerge in the system independently of
the specific structure of the network. Such mechanism can be used, among other
possibilities, to drive particles’ movements and let the amorphous computer self-
assemble in a specific shape. Although conceived for a very specific scenario, this
approach shares with Co-Fields the idea of having a single, physically inspired,
mechanism to both diffuse contextual information and to organize adaptive mo-
tion coordination patterns. Finally, we want to emphasize again that, in our
opinion [9], a lot of related work form the swarm intelligence research [7], there
included flocks of birds, schools of fishes and packs of wolves [8], can all be
modeled in terms of Co-Fields.

6 Conclusions and Future Work

While both a preliminary prototype implementation and the outcomes of our
simulation shows the feasibility of the approach, a number of research directions
are still open to improve its generality and its practical applicability. In addition
to the already identified need for general methodologies to help designing specific
coordination patterns in terms of Co-Fields, it will be important to explore
the potential of Co-Fields in encoding more general distributed coordination
patterns, possibly not related to motion.

Acknowledgements

Work supported by the Italian MIUR and CNR in the “Progetto Strategico
IS-MANET, Infrastructures for Mobile ad-hoc Networks”.

References

1. Quake 3 Arena: (http://www.idsoftware.com/games/quake/quake3-arena)
2. Unreal Tournament: (http://www.unrealtournament.com)
3. Liard, J.: It knows what you’re going to do: Adding anticipation to a quakebot.

In: Intenational Conference on Autonomous Agents, Montreal, Canada (2001)
4. Quake 3 Team Arena: (http://www.idsoftware.com/games/quake/quake3-

teamarena)
5. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The

International Journal of Robotics Research 5 (1986) 90 – 98
6. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-

cations with the tota middleware. In: IEEE International Conference On Pervasive
Computing (Percom). IEEE CS Press, Orlando (FL), USA (2004)

278 M. Mamei and F. Zambonelli

7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to
Artificial Systems. Oxford University Press, Oxford (UK) (1999)

8. Parunak, H.V.: Go to the ant: Engineering principles from natural multi-agent
systems. Annals of Operations Research 75 (1997) 69 – 101

9. Mamei, M., Leonardi, L., Zambonelli, F.: Co-fields: A unifying approach to swarm
intelligence. In: Engineering Societies in the Agents World III: Third International
Workshop, ESAW 2002. LNAI. Springer-Verlag, (Berlin, DE) 68 – 81

10. J. Liard, J.D.: Creating human-like synthetic characters with multiple skill levels:
A case study using the soar quakebot. In: AAAI 2000 Fall Symposium Series:
Simulating Human Agents. (2000)

11. Holmes, S.: Focus on MOD programming in Quake 3 Arena. Premier Press (2002)
12. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE

Computer 34 (2001) 57 – 66
13. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: A physically inspired approach

to distributed motion coordination. IEEE Pervasive Computing 3 (2004) 52 – 61
14. Mamei, M., Zambonelli, F., Leonardi, L.: Distributed motion coordination with

co-fields: A case study in urban traffic management. In: 6th IEEE Symposium on
Autonomous Decentralized Systems. IEEE CS Press, Pisa, Italy (2003) 63 – 70

15. The Sims: (http://thesims.ea.com)
16. Johnson, S.: Wild things. Wired 10 (2002)
17. Koeppel, D.: Massive attack. Popular Science (2002) 38 – 44
18. Johansson, S., Saffiotti, A.: Using the electric field approach in the RoboCup

domain. In: RoboCup 2001: Robot Soccer World Cup V. LNAI. Springer-Verlag,
(Berlin, DE) 399–404

19. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent
control. In: Proceedings of the 1st Joint Conference on Autonomous Agents and
Multi-Agent Systems. ACM Press, Bologna, Italy (2002) 418 – 425

Author Index

Baez, José 48
Bandini, Stefania 74
Bordini, Rafael H. 91
Brueckner, Sven A. 232, 246

Castelfranchi, Cristiano 215
Chang, Paul Hsueh-Min 57
Chen, Kuang-Tai 57
Chien, Yu-Hung 57

da Rocha Costa, Antônio Carlos 91

Fehler, Manuel 127
Ferber, Jacques 1, 48

Gouäıch, Abdelkader 109
Guiraud, Yves 109

Herrler, Rainer 127
Holvoet, Tom 1

Julien, Christine 168

Kao, Edward 57
Klügl, Franziska 127

Lees, Michael 150
Logan, Brian 150

Mamei, Marco 264
Manzoni, Sara 74
Michel, Fabien 1, 48, 109
Minson, Rob 150

Oguara, Ton 150
Okuyama, Fabio Y. 91
Omicini, Andrea 190, 215

Parunak, H. Van Dyke 1, 232, 246

Ricci, Alessandro 190, 215
Roman, Gruia-Catalin 168

Sauter, John 246
Soo, Von-Wun 57

Theodoropoulos, Georgios 150
Tummolini, Luca 215

Viroli, Mirko 190, 215
Vizzari, Giuseppe 74

Weyns, Danny 1

Zambonelli, Franco 264

	Frontmatter
	Survey
	Environments for Multiagent Systems State-of-the-Art and Research Challenges

	Conceptual Models
	AGRE: Integrating Environments with Organizations
	From Reality to Mind: A Cognitive Middle Layer of Environment Concepts for Believable Agents
	A Spatially Dependent Communication Model for Ubiquitous Systems

	Languages for Design and Specification
	ELMS: An Environment Description Language for Multi-agent Simulation
	MIC<Superscript>*</Superscript>: A Deployment Environment for Autonomous Agents

	Simulation and Environments
	About the Role of the Environment in Multi-agent Simulations
	Modelling Environments for Distributed Simulation

	Mediated Coordination
	Supporting Context-Aware Interaction in Dynamic Multi-agent Systems
	Environment-Based Coordination Through Coordination Artifacts
	``Exhibitionists'' and ``Voyeurs'' Do It Better: A Shared Environment for Flexible Coordination with Tacit Messages

	Applications
	Swarming Distributed Pattern Detection and Classification
	Digital Pheromones for Coordination of Unmanned Vehicles
	Motion Coordination in the Quake 3 Arena Environment: A Field-Based Approach

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

